JEE MAIN - Mathematics (2019 - 9th April Evening Slot - No. 4)
If $$\cos x{{dy} \over {dx}} - y\sin x = 6x$$, (0 < x < $${\pi \over 2}$$)
and $$y\left( {{\pi \over 3}} \right)$$ = 0 then $$y\left( {{\pi \over 6}} \right)$$ is equal to :-
and $$y\left( {{\pi \over 3}} \right)$$ = 0 then $$y\left( {{\pi \over 6}} \right)$$ is equal to :-
$$ - {{{\pi ^2}} \over {2 }}$$
$$ - {{{\pi ^2}} \over {4\sqrt 3 }}$$
$$ {{{\pi ^2}} \over {2\sqrt 3 }}$$
$$ - {{{\pi ^2}} \over {2\sqrt 3 }}$$
Explanation
$$\cos x{{dy} \over {dx}} - y\sin x = 6x$$
$$ \Rightarrow $$ $${{dy} \over {dx}} - y\tan x = 6x.\sec x$$
This is a linear differential equation.
$$ \therefore $$ I.F = $${e^{\int { - \tan xdx} }}$$ = $$\left| {\cos x} \right|$$
As 0 < x < $${\pi \over 2}$$, so I.F = $$\cos x$$
So solution is
y(I.F) = $$\int {6x.\sec x\left( {I.F} \right)} dx$$
$$ \Rightarrow $$ y cosx = $$\int {6x.\sec x\cos x} dx$$
$$ \Rightarrow $$ y cosx = $$6\int x dx$$
$$ \Rightarrow $$ y cosx = 3x2 + C
As $$y\left( {{\pi \over 3}} \right) = 0 $$
$$ \therefore $$ $$ \left( 0 \right) \times \left( {{1 \over 2}} \right) = {{3{\pi ^2}} \over 9} + C $$
$$\Rightarrow C = {{ - {\pi ^2}} \over 3}$$
$$ \Rightarrow y\cos x = 3{x^2} - {{{\pi ^2}} \over 3}$$
For $$y\left( {{\pi \over 6}} \right)$$
$$y{{\sqrt 3 } \over 2} = {{3{\pi ^2}} \over {36}} - {{{\pi ^2}} \over 3}$$
$$ \Rightarrow $$ $${{\sqrt 3 y} \over 2} = {{ - 3{\pi ^2}} \over {12}} $$
$$\Rightarrow y = {{ - {\pi ^2}} \over {2\sqrt 3 }}$$
$$ \Rightarrow $$ $${{dy} \over {dx}} - y\tan x = 6x.\sec x$$
This is a linear differential equation.
$$ \therefore $$ I.F = $${e^{\int { - \tan xdx} }}$$ = $$\left| {\cos x} \right|$$
As 0 < x < $${\pi \over 2}$$, so I.F = $$\cos x$$
So solution is
y(I.F) = $$\int {6x.\sec x\left( {I.F} \right)} dx$$
$$ \Rightarrow $$ y cosx = $$\int {6x.\sec x\cos x} dx$$
$$ \Rightarrow $$ y cosx = $$6\int x dx$$
$$ \Rightarrow $$ y cosx = 3x2 + C
As $$y\left( {{\pi \over 3}} \right) = 0 $$
$$ \therefore $$ $$ \left( 0 \right) \times \left( {{1 \over 2}} \right) = {{3{\pi ^2}} \over 9} + C $$
$$\Rightarrow C = {{ - {\pi ^2}} \over 3}$$
$$ \Rightarrow y\cos x = 3{x^2} - {{{\pi ^2}} \over 3}$$
For $$y\left( {{\pi \over 6}} \right)$$
$$y{{\sqrt 3 } \over 2} = {{3{\pi ^2}} \over {36}} - {{{\pi ^2}} \over 3}$$
$$ \Rightarrow $$ $${{\sqrt 3 y} \over 2} = {{ - 3{\pi ^2}} \over {12}} $$
$$\Rightarrow y = {{ - {\pi ^2}} \over {2\sqrt 3 }}$$
Comments (0)
