JEE MAIN - Mathematics (2019 - 8th April Morning Slot - No. 3)
The sum of the solutions of the equation
$$\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0$$
(x > 0) is equal to:
$$\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0$$
(x > 0) is equal to:
9
12
4
10
Explanation
Case 1 : When $$\sqrt x \ge 2$$
then $$\left| {\sqrt x - 2} \right| = \sqrt x - 2$$
$$ \therefore $$ The given equation becomes,
$$\left( {\sqrt x - 2} \right)$$ + $$\sqrt x \left( {\sqrt x - 4} \right) + 2$$ = 0
$$ \Rightarrow $$ $$\left( {\sqrt x - 2} \right)$$ + $$x - 4\sqrt x $$ + 2 = 0
$$ \Rightarrow $$ $$x - 3\sqrt x $$ = 0
$$ \Rightarrow $$ $$\sqrt x \left( {\sqrt x - 3} \right)$$ = 0
$$ \therefore $$ $$\sqrt x $$ = 0 or 3
$$\sqrt x $$ = 0 is not possible as $$\sqrt x \ge 2$$.
So, $$\sqrt x $$ = 3
or $$x$$ = 9
Case 2 : When $$\sqrt x < 2$$
then $$\left| {\sqrt x - 2} \right| = $$$$ - \left( {\sqrt x - 2} \right)$$ = $$2 - \sqrt x $$
$$ \therefore $$ The given equation becomes,
$$\left( {2 - \sqrt x } \right)$$ + $$\sqrt x \left( {\sqrt x - 4} \right) + 2$$ = 0
$$ \Rightarrow $$ $${2 - \sqrt x }$$ + $$x - 4\sqrt x $$ + 2 = 0
$$ \Rightarrow $$ $$x - 5\sqrt x + 4$$ = 0
$$ \Rightarrow $$ $$x - 4\sqrt x - \sqrt x + 4$$ = 0
$$ \Rightarrow $$ $$\sqrt x \left( {\sqrt x - 4} \right)$$$$-\left( {\sqrt x - 4} \right)$$ = 0
$$ \Rightarrow $$ $$\left( {\sqrt x - 4} \right)$$$$\left( {\sqrt x - 1} \right)$$ = 0
$$ \therefore $$ $$\sqrt x $$ = 4 or 1
$$\sqrt x $$ = 4 is not possible as $$\sqrt x < 2$$.
$$ \therefore $$ $$\sqrt x $$ = 1
or $$x$$ = 1
So, Sum of all solutions = 9 + 1 = 10
then $$\left| {\sqrt x - 2} \right| = \sqrt x - 2$$
$$ \therefore $$ The given equation becomes,
$$\left( {\sqrt x - 2} \right)$$ + $$\sqrt x \left( {\sqrt x - 4} \right) + 2$$ = 0
$$ \Rightarrow $$ $$\left( {\sqrt x - 2} \right)$$ + $$x - 4\sqrt x $$ + 2 = 0
$$ \Rightarrow $$ $$x - 3\sqrt x $$ = 0
$$ \Rightarrow $$ $$\sqrt x \left( {\sqrt x - 3} \right)$$ = 0
$$ \therefore $$ $$\sqrt x $$ = 0 or 3
$$\sqrt x $$ = 0 is not possible as $$\sqrt x \ge 2$$.
So, $$\sqrt x $$ = 3
or $$x$$ = 9
Case 2 : When $$\sqrt x < 2$$
then $$\left| {\sqrt x - 2} \right| = $$$$ - \left( {\sqrt x - 2} \right)$$ = $$2 - \sqrt x $$
$$ \therefore $$ The given equation becomes,
$$\left( {2 - \sqrt x } \right)$$ + $$\sqrt x \left( {\sqrt x - 4} \right) + 2$$ = 0
$$ \Rightarrow $$ $${2 - \sqrt x }$$ + $$x - 4\sqrt x $$ + 2 = 0
$$ \Rightarrow $$ $$x - 5\sqrt x + 4$$ = 0
$$ \Rightarrow $$ $$x - 4\sqrt x - \sqrt x + 4$$ = 0
$$ \Rightarrow $$ $$\sqrt x \left( {\sqrt x - 4} \right)$$$$-\left( {\sqrt x - 4} \right)$$ = 0
$$ \Rightarrow $$ $$\left( {\sqrt x - 4} \right)$$$$\left( {\sqrt x - 1} \right)$$ = 0
$$ \therefore $$ $$\sqrt x $$ = 4 or 1
$$\sqrt x $$ = 4 is not possible as $$\sqrt x < 2$$.
$$ \therefore $$ $$\sqrt x $$ = 1
or $$x$$ = 1
So, Sum of all solutions = 9 + 1 = 10
Comments (0)
