JEE MAIN - Mathematics (2019 - 8th April Morning Slot - No. 23)

Let ƒ : [0, 2] $$ \to $$ R be a twice differentiable function such that ƒ''(x) > 0, for all x $$ \in $$ (0, 2). If $$\phi $$(x) = ƒ(x) + ƒ(2 – x), then $$\phi $$ is :
decreasing on (0, 2)
decreasing on (0, 1) and increasing on (1, 2)
increasing on (0, 2)
increasing on (0, 1) and decreasing on (1, 2)

Explanation

$$\phi $$(x) = ƒ(x) + ƒ(2 – x)

$$ \Rightarrow $$ $$\phi $$'(x) = ƒ'(x) - ƒ'(2 – x)

Since ƒ''(x) > 0 for all x $$ \in $$ (0, 2)

$$ \Rightarrow $$ ƒ'(x) is an increasing function for all x $$ \in $$ (0, 2).

Case 1 : When $$\phi $$(x) is increasing function

So $$\phi $$'(x) > 0

$$ \Rightarrow $$ ƒ'(x) - ƒ'(2 – x) > 0

$$ \Rightarrow $$ ƒ'(x) > ƒ'(2 – x)

$$ \Rightarrow $$ x > 2 – x

$$ \Rightarrow $$ x > 1

$$ \therefore $$ $$\phi $$(x) is increasing on (1, 2).

Case 2 : When $$\phi $$(x) is decreasing function

So $$\phi $$'(x) < 0

$$ \Rightarrow $$ ƒ'(x) - ƒ'(2 – x) < 0

$$ \Rightarrow $$ ƒ'(x) < ƒ'(2 – x)

$$ \Rightarrow $$ x < 2 – x

$$ \Rightarrow $$ x < 1

$$ \therefore $$ $$\phi $$(x) is decreasing on (0, 1).

Comments (0)

Advertisement