JEE MAIN - Mathematics (2019 - 8th April Morning Slot - No. 18)
If cos($$\alpha $$ + $$\beta $$) = 3/5 ,sin ( $$\alpha $$ - $$\beta $$) = 5/13 and
0 < $$\alpha , \beta$$ < $$\pi \over 4$$, then tan(2$$\alpha $$) is equal to :
21/16
63/52
33/52
63/16
Explanation
Given $$0 < \alpha < {\pi \over 4}$$
and $$0 < \beta < {\pi \over 4}$$
$$ \therefore $$ $$0 > - \beta > - {\pi \over 4}$$
$$ \therefore $$ $$0 < \alpha + \beta < {\pi \over 2}$$
and $$ - {\pi \over 4} < \alpha - \beta < {\pi \over 4}$$
As cos($$\alpha $$ + $$\beta $$) = 3/5
so $${\tan \left( {\alpha + \beta } \right) = {4 \over 3}}$$
As sin( $$\alpha $$ - $$\beta $$) = 5/13
so $${\tan \left( {\alpha - \beta } \right) = {5 \over {12}}}$$
Now tan(2$$\alpha $$) = tan($$\alpha $$ + $$\beta $$ + $$\alpha $$ - $$\beta $$)
= $${{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)} \over {1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}$$
= $${{{4 \over 3} + {5 \over {12}}} \over {1 - {4 \over 3} \times {5 \over {12}}}}$$ = $${{63} \over {16}}$$
and $$0 < \beta < {\pi \over 4}$$
$$ \therefore $$ $$0 > - \beta > - {\pi \over 4}$$
$$ \therefore $$ $$0 < \alpha + \beta < {\pi \over 2}$$
and $$ - {\pi \over 4} < \alpha - \beta < {\pi \over 4}$$
As cos($$\alpha $$ + $$\beta $$) = 3/5
so $${\tan \left( {\alpha + \beta } \right) = {4 \over 3}}$$
As sin( $$\alpha $$ - $$\beta $$) = 5/13
so $${\tan \left( {\alpha - \beta } \right) = {5 \over {12}}}$$
Now tan(2$$\alpha $$) = tan($$\alpha $$ + $$\beta $$ + $$\alpha $$ - $$\beta $$)
= $${{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)} \over {1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}$$
= $${{{4 \over 3} + {5 \over {12}}} \over {1 - {4 \over 3} \times {5 \over {12}}}}$$ = $${{63} \over {16}}$$
Comments (0)
