JEE MAIN - Mathematics (2019 - 8th April Morning Slot - No. 13)
The length of the perpendicular from the point
(2, –1, 4) on the straight line,
$${{x + 3} \over {10}}$$= $${{y - 2} \over {-7}}$$ = $${{z} \over {1}}$$ is :
$${{x + 3} \over {10}}$$= $${{y - 2} \over {-7}}$$ = $${{z} \over {1}}$$ is :
less than 2
greater than 4
greater than 2 but less than 3
greater than 3 but less than 4
Explanation
_8th_April_Morning_Slot_en_13_2.png)
Let $${{x + 3} \over {10}}$$= $${{y - 2} \over {-7}}$$ = $${{z} \over {1}}$$ = $$\lambda $$
$$ \therefore $$ General point Q(10$$\lambda $$ - 3, -7$$\lambda $$ + 2, $$\lambda $$).
$$\overrightarrow {PQ} $$ = (10$$\lambda $$ - 5)$$\widehat i$$ + (3 - 7$$\lambda $$)$$\widehat j$$ + ($$\lambda $$ - 4)$$\widehat k$$
The vector parrallel to the given line is
= 10$$\widehat i$$ - 7$$\widehat j$$ + $$\widehat k$$
As $$\overrightarrow {PQ} $$ and (10$$\widehat i$$ - 7$$\widehat j$$ + $$\widehat k$$) are perpendicular to the each other.
$$\overrightarrow {PQ} $$ . (10$$\widehat i$$ - 7$$\widehat j$$ + $$\widehat k$$) = 0
$$ \Rightarrow $$ (10$$\lambda $$ - 5)10 + (3 - 7$$\lambda $$)(-7) + ($$\lambda $$ - 4)(1) = 0
$$ \Rightarrow $$ 100$$\lambda $$ – 50 + 49$$\lambda $$ – 21 + $$\lambda $$ – 4 = 0
$$ \Rightarrow $$ 150$$\lambda $$ = 75
$$ \Rightarrow $$ $$\lambda $$ = $${1 \over 2}$$
$$ \therefore $$ The point Q = (2, $$ - {3 \over 2}$$, $${1 \over 2}$$)
$$ \therefore $$ Length of perpendicular (PQ) = $$\sqrt {0 + {1 \over 4} + {{49} \over 4}} $$
= $$\sqrt {{{50} \over 4}} = {5 \over {\sqrt 2 }}$$ = 3.53
Comments (0)
