JEE MAIN - Mathematics (2019 - 8th April Evening Slot - No. 9)
Let ƒ : R $$ \to $$ R be a differentiable function
satisfying ƒ'(3) + ƒ'(2) = 0.
Then $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + f(3 + x) - f(3)} \over {1 + f(2 - x) - f(2)}}} \right)^{{1 \over x}}}$$ is equal to
Then $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + f(3 + x) - f(3)} \over {1 + f(2 - x) - f(2)}}} \right)^{{1 \over x}}}$$ is equal to
e
e2
e–1
1
Explanation
The general formula for indeterminate form 1$$\infty $$ is
$$\mathop {\lim }\limits_{x \to a} {\left( {f\left( x \right)} \right)^{g\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to a} g\left( x \right)\left( {f\left( x \right) - 1} \right)}}$$
I = $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + f(3 + x) - f(3)} \over {1 + f(2 - x) - f(2)}}} \right)^{{1 \over x}}}$$
Here I is in 1$$\infty $$ form.
$$ \therefore $$ I = $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{1 + f\left( {3 + x} \right) - f\left( 3 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}} - 1} \right){1 \over x}}}$$
= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{1 + f\left( {3 + x} \right) - f\left( 3 \right) - 1 - f\left( {2 - x} \right) + f\left( 2 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right){1 \over x}}}$$
= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{f\left( {3 + x} \right) - f\left( 3 \right) - f\left( {2 - x} \right) + f\left( 2 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right){1 \over x}}}$$
Here $${{{f\left( {3 + x} \right) - f\left( 3 \right) - f\left( {2 - x} \right) + f\left( 2 \right)} \over x}}$$ is in $${0 \over 0}$$ form.
So using L'Hopital rule we get
= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{f'\left( {3 + x} \right) + f'\left( {2 - x} \right)} \over 1}} \right).\mathop {\lim }\limits_{x \to 0} \left( {{1 \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right)}}$$
= $${e^{\left( {f'\left( 3 \right) + f'\left( 2 \right)} \right).1}}$$
= e0 [ as given ƒ'(3) + ƒ'(2) = 0 ]
= 1
$$\mathop {\lim }\limits_{x \to a} {\left( {f\left( x \right)} \right)^{g\left( x \right)}} = {e^{\mathop {\lim }\limits_{x \to a} g\left( x \right)\left( {f\left( x \right) - 1} \right)}}$$
I = $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + f(3 + x) - f(3)} \over {1 + f(2 - x) - f(2)}}} \right)^{{1 \over x}}}$$
Here I is in 1$$\infty $$ form.
$$ \therefore $$ I = $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{1 + f\left( {3 + x} \right) - f\left( 3 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}} - 1} \right){1 \over x}}}$$
= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{1 + f\left( {3 + x} \right) - f\left( 3 \right) - 1 - f\left( {2 - x} \right) + f\left( 2 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right){1 \over x}}}$$
= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{f\left( {3 + x} \right) - f\left( 3 \right) - f\left( {2 - x} \right) + f\left( 2 \right)} \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right){1 \over x}}}$$
Here $${{{f\left( {3 + x} \right) - f\left( 3 \right) - f\left( {2 - x} \right) + f\left( 2 \right)} \over x}}$$ is in $${0 \over 0}$$ form.
So using L'Hopital rule we get
= $${e^{\mathop {\lim }\limits_{x \to 0} \left( {{{f'\left( {3 + x} \right) + f'\left( {2 - x} \right)} \over 1}} \right).\mathop {\lim }\limits_{x \to 0} \left( {{1 \over {1 + f\left( {2 - x} \right) - f\left( 2 \right)}}} \right)}}$$
= $${e^{\left( {f'\left( 3 \right) + f'\left( 2 \right)} \right).1}}$$
= e0 [ as given ƒ'(3) + ƒ'(2) = 0 ]
= 1
Comments (0)
