JEE MAIN - Mathematics (2019 - 8th April Evening Slot - No. 17)
The height of a right circular cylinder of maximum
volume inscribed in a sphere of radius 3 is
$$\sqrt 3 $$
$$2\sqrt 3 $$
$$\sqrt 6 $$
$${2 \over 3} {\sqrt 3} $$
Explanation
_8th_April_Evening_Slot_en_17_2.png)
Here r = 3 cos$$\theta $$
and $${h \over 2}$$ = 3 sin$$\theta $$
$$ \Rightarrow $$ h = 6 sin$$\theta $$
We know, Volume of cylinder
V = $$\pi $$ r2 h
$$ \Rightarrow $$ V = $$\pi $$ (9cos2$$\theta $$)(6 sin$$\theta $$)
$$ \Rightarrow $$ V = 54$$\pi $$ (sin$$\theta $$ - sin3$$\theta $$)
For maxima/minima of volume,
$${{dV} \over {dh}} = 0$$
$$ \Rightarrow $$ cos$$\theta $$ - 3sin2$$\theta $$ cos$$\theta $$ = 0
$$ \Rightarrow $$ cos$$\theta $$(1 - 3sin2$$\theta $$) = 0
$$ \Rightarrow $$ cos$$\theta $$ = 0
$$ \Rightarrow $$ $$\theta $$ = $${\pi \over 2}$$ (not possible)
or 1 - 3sin2$$\theta $$ = 0
$$ \Rightarrow $$ sin$$\theta $$ = $${1 \over {\sqrt 3 }}$$
$$ \therefore $$ h = 6 sin$$\theta $$ = $${6 \over {\sqrt 3 }}$$ = $$2\sqrt 3 $$
Comments (0)
