JEE MAIN - Mathematics (2019 - 8th April Evening Slot - No. 15)

A student scores the following marks in five tests :

45, 54, 41, 57, 43.

His score is not known for the sixth test. If the mean score is 48 in the six tests, then the standard deviation of the marks in six tests is
$$100 \over {\sqrt 3}$$
$$10 \over {\sqrt 3}$$
$$10 \over3$$
$$100 \over3$$

Explanation

Let the score in the sixth test = x

Given, Mean ($$\overline x $$) = 48

$$ \Rightarrow $$ $${{45 + 54 + 41 + 57 + 43 + x} \over 6}$$ = 48

$$ \Rightarrow $$ x = 48

Standard deviation (SD)

= $$\sqrt {{{\sum\limits_{i = 1}^N {{{\left( {{x_i} - \overline x } \right)}^2}} } \over N}} $$

= $$\sqrt {{\matrix{ {\left( {45 - 48} \right)^2} + {\left( {54 - 48} \right)^2} \hfill \cr + {\left( {41 - 48} \right)^2} + {\left( {57 - 48} \right)^2} \hfill \cr + {\left( {43 - 48} \right)^2} + {\left( {48 - 48} \right)^2} \hfill \cr} \over 6}} $$

= $$\sqrt {{{9 + 36 + 49 + 81 + 25} \over 6}} $$

= $$\sqrt {{{200} \over 6}} $$

= $$\sqrt {{{100} \over 3}} $$

= $${{10} \over {\sqrt 3 }}$$

Comments (0)

Advertisement