JEE MAIN - Mathematics (2019 - 12th January Morning Slot - No. 17)
$$\mathop {\lim }\limits_{x \to \pi /4} {{{{\cot }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$ is :
$$8\sqrt 2 $$
4
$$4\sqrt 2 $$
8
Explanation
$$\mathop {\lim }\limits_{x \to \pi /4} {{{{\cot }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{1 \over {{{\tan }^3}x}} - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{1 - {{\tan }^4}x} \over {\left( {{{\tan }^3}x} \right)\cos \left( {x + {\pi \over 4}} \right)}}$$
=$$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{\left( {1 - {{\tan }^2}x} \right)\left( {1 + {{\tan }^2}x} \right)} \over {\left( {{{\tan }^3}x} \right)\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{\left( {1 - {{\tan }^2}x} \right)\left( {1 + {{\tan }^2}{\pi \over 4}} \right)} \over {\left( {{{\tan }^3}{\pi \over 4}} \right)\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{\left( {1 - {{\tan }^2}x} \right)\left( {1 + 1} \right)} \over {1.\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\left( {1 - {{\tan }^2}x} \right)} \over {\left( {{{\cos x - \sin x} \over {\sqrt 2 }}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {1 - {{{{\sin }^2}x} \over {{{\cos }^2}x}}} \right)} \over {\left( {\cos x - \sin x} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {{{\cos }^2}x - {{\sin }^2}x} \right)} \over {{{\cos }^2}x\left( {\cos x - \sin x} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)} \over {{{\cos }^2}x\left( {\cos x - \sin x} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {\cos x + \sin x} \right)} \over {{{\cos }^2}x}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {\cos {\pi \over 4} + \sin {\pi \over 4}} \right)} \over {{{\cos }^2}{\pi \over 4}}}$$
= $${{2\sqrt 2 \left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}} \right)} \over {{1 \over 2}}}$$
= $${{2\sqrt 2 \left( {{2 \over {\sqrt 2 }}} \right)} \over {{1 \over 2}}}$$
= 8
Other Method :
$$\mathop {\lim }\limits_{x \to \pi /4} {{{{\cot }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$
This is in $${0 \over 0}$$ form so L' Hospital rule is applicable.
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{3{{\cot }^3}x\left( { - \cos e{c^2}x} \right) - {{\sec }^2}x} \over { - \sin \left( {x + {\pi \over 4}} \right)}}$$
= $${{3 \times 1\left( { - {{\left( {\sqrt 2 } \right)}^2}} \right) - {{\left( {\sqrt 2 } \right)}^2}} \over { - 1}}$$
= $${{ - 6 - 2} \over { - 1}}$$ = 8
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{1 \over {{{\tan }^3}x}} - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{1 - {{\tan }^4}x} \over {\left( {{{\tan }^3}x} \right)\cos \left( {x + {\pi \over 4}} \right)}}$$
=$$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{\left( {1 - {{\tan }^2}x} \right)\left( {1 + {{\tan }^2}x} \right)} \over {\left( {{{\tan }^3}x} \right)\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{\left( {1 - {{\tan }^2}x} \right)\left( {1 + {{\tan }^2}{\pi \over 4}} \right)} \over {\left( {{{\tan }^3}{\pi \over 4}} \right)\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{\left( {1 - {{\tan }^2}x} \right)\left( {1 + 1} \right)} \over {1.\cos \left( {x + {\pi \over 4}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\left( {1 - {{\tan }^2}x} \right)} \over {\left( {{{\cos x - \sin x} \over {\sqrt 2 }}} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {1 - {{{{\sin }^2}x} \over {{{\cos }^2}x}}} \right)} \over {\left( {\cos x - \sin x} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {{{\cos }^2}x - {{\sin }^2}x} \right)} \over {{{\cos }^2}x\left( {\cos x - \sin x} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)} \over {{{\cos }^2}x\left( {\cos x - \sin x} \right)}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {\cos x + \sin x} \right)} \over {{{\cos }^2}x}}$$
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{2\sqrt 2 \left( {\cos {\pi \over 4} + \sin {\pi \over 4}} \right)} \over {{{\cos }^2}{\pi \over 4}}}$$
= $${{2\sqrt 2 \left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}} \right)} \over {{1 \over 2}}}$$
= $${{2\sqrt 2 \left( {{2 \over {\sqrt 2 }}} \right)} \over {{1 \over 2}}}$$
= 8
Other Method :
$$\mathop {\lim }\limits_{x \to \pi /4} {{{{\cot }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$
This is in $${0 \over 0}$$ form so L' Hospital rule is applicable.
= $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{3{{\cot }^3}x\left( { - \cos e{c^2}x} \right) - {{\sec }^2}x} \over { - \sin \left( {x + {\pi \over 4}} \right)}}$$
= $${{3 \times 1\left( { - {{\left( {\sqrt 2 } \right)}^2}} \right) - {{\left( {\sqrt 2 } \right)}^2}} \over { - 1}}$$
= $${{ - 6 - 2} \over { - 1}}$$ = 8
Comments (0)
