JEE MAIN - Mathematics (2019 - 12th April Morning Slot - No. 17)

If the area (in sq. units) of the region {(x, y) : y2 $$ \le $$ 4x, x + y $$ \le $$ 1, x $$ \ge $$ 0, y $$ \ge $$ 0} is a $$\sqrt 2 $$ + b, then a – b is equal to :
$${8 \over 3}$$
$$ - {2 \over 3}$$
6
$${{10} \over 3}$$

Explanation

JEE Main 2019 (Online) 12th April Morning Slot Mathematics - Area Under The Curves Question 110 English Explanation Let P be the point common to x + y = 1 and y2 = 4x

Then y2 = 4(1-y) $$ \Rightarrow $$ y2 - 4y - 4 = 0

$$ \Rightarrow y = {{ - 4 \pm \sqrt {16 + 16} } \over 2}$$

$$ \Rightarrow y = - 2 + 2\sqrt 2 $$

Then P is (3 - $$ 2\sqrt 2$$, -2 + $$ 2\sqrt 2$$).

Hence shaded area = Area of region (OPN) + area of ($$\Delta OPQ$$)

$$ \Rightarrow {\int\limits_0^{3 - 2\sqrt 2 } {2\sqrt {xdx} + {1 \over 2}\left[ {1 - (3 - 2\sqrt 2 )} \right]} ^2}$$

$$ \Rightarrow {2 \over 3}2\left( {\sqrt 2 - 1} \right)\left( {3 - 2\sqrt 2 } \right) + {1 \over 2}{\left[ {2(\sqrt 2 - 1)} \right]^2}$$

$$ \Rightarrow {4 \over 3}\left\{ { - 7 + 5\sqrt 2 } \right\} + 2\left( {3 - 2\sqrt 2 } \right)$$

$$ \Rightarrow \left( {{{20} \over 3} - 4} \right)\sqrt 2 + 6 - {{28} \over 3}$$

$$ \Rightarrow {8 \over 3}\sqrt 2 - {{10} \over 3}$$

Then a = $${8 \over 3}$$ and b = $${-10 \over 3}$$, so a - b = 6

Comments (0)

Advertisement