JEE MAIN - Mathematics (2019 - 12th April Morning Slot - No. 15)

If A is a symmetric matrix and B is a skew-symmetric matrix such that A + B = $$\left[ {\matrix{ 2 & 3 \cr 5 & { - 1} \cr } } \right]$$, then AB is equal to :
$$\left[ {\matrix{ 4 & { - 2} \cr 1 & { - 4} \cr } } \right]$$
$$\left[ {\matrix{ { - 4} & { - 2} \cr { - 1} & 4 \cr } } \right]$$
$$\left[ {\matrix{ { - 4} & 2 \cr 1 & 4 \cr } } \right]$$
$$\left[ {\matrix{ 4 & { - 2} \cr { - 1} & { - 4} \cr } } \right]$$

Explanation

$$A + B = \left[ {\matrix{ 2 & 3 \cr 5 & { - 1} \cr } } \right] = P(say)$$

Now $$A = {{P + {P^T}} \over 2}\& B = {{P - {P^T}} \over 2}$$

So $$A = {1 \over 2}\left( {\left[ {\matrix{ 2 & 3 \cr 5 & { - 1} \cr } } \right] + \left[ {\matrix{ 2 & 5 \cr 3 & { - 1} \cr } } \right]} \right) = \left[ {\matrix{ 2 & 4 \cr 4 & { - 1} \cr } } \right]$$

$$B = {1 \over 2}\left( {\left[ {\matrix{ 2 & 3 \cr 5 & { - 1} \cr } } \right] - \left[ {\matrix{ 2 & 5 \cr 3 & { - 1} \cr } } \right]} \right) = \left[ {\matrix{ 0 & { - 1} \cr 1 & 0 \cr } } \right]$$

So $$AB = \left( {\left[ {\matrix{ 2 & 4 \cr 4 & { - 1} \cr } } \right]\left[ {\matrix{ 0 & { - 1} \cr 1 & 0 \cr } } \right]} \right) = \left[ {\matrix{ 4 & { - 2} \cr { - 1} & { - 4} \cr } } \right]$$

Comments (0)

Advertisement