JEE MAIN - Mathematics (2019 - 12th April Evening Slot - No. 5)

If $$\alpha $$, $$\beta $$ and $$\gamma $$ are three consecutive terms of a non-constant G.P. such that the equations $$\alpha $$x 2 + 2$$\beta $$x + $$\gamma $$ = 0 and x2 + x – 1 = 0 have a common root, then $$\alpha $$($$\beta $$ + $$\gamma $$) is equal to :
$$\alpha $$$$\gamma $$
0
$$\beta $$$$\gamma $$
$$\alpha $$$$\beta $$

Explanation

Let the common ratio of G.P is r

Then the equation of $$\alpha {x^2} + 2\beta x + \gamma = 0$$

$$ \Rightarrow $$ $$\alpha {x^2} + 2\alpha rx + \alpha {r^2} = 0$$

$$ \Rightarrow $$ x2 + 2rx + r2 = 0 ........(i)
Equation (i) and x2 + x - 1 = 0 ......... (ii) has a common root.

Now (i) - (ii) $$ \Rightarrow $$ (2r-1)x + (r2+1) = 0

$$ \Rightarrow $$ x = $${{ - \left( {{r^2} + 1} \right)} \over {2r - 1}}$$ ....... (iii)

Now putting (iii) in equation (ii)

$$ \Rightarrow $$ (r2+1)2 - (r2+1) (2r - 1) - (2r - 1)2 = 0

$$ \Rightarrow $$ r4 - 2r3 - r2 + 2r + 1 = 0 .......... (iv)

dividing equation (iv) by r2

$$ \Rightarrow $$ r2 - 2r - 1 + $${2 \over r} + {1 \over {{r^2}}} = 0$$

$$ \Rightarrow $$ $${\left( {r - {1 \over r}} \right)^2} - 2\left( {r - {1 \over r}} \right) + 1 = 0$$

$$ \Rightarrow $$ $${\left( {r - {1 \over r} - r} \right)^2} = 0$$

$$ \Rightarrow $$ $${{{r^2} - 1} \over r} = 1$$ $$ \Rightarrow $$ r2 = 1 + r

Now $$\alpha $$($$\beta $$ + $$\gamma $$) $$ \Rightarrow $$ $$\alpha $$($$\alpha $$r + $$\alpha $$r2)

$$ \Rightarrow $$ $$\alpha ^2 r (1 + r)$$   [$$ \because $$ r2 = 1 + r]

$$ \Rightarrow $$ $$\alpha ^2 r . r^2$$ $$ \Rightarrow $$ $$( \alpha r )\,( \alpha r^2 )$$ $$ \Rightarrow $$ $$\beta $$$$\gamma $$

Comments (0)

Advertisement