JEE MAIN - Mathematics (2019 - 12th April Evening Slot - No. 2)

If the area (in sq. units) bounded by the parabola y2 = 4$$\lambda $$x and the line y = $$\lambda $$x, $$\lambda $$ > 0, is $${1 \over 9}$$ , then $$\lambda $$ is equal to :
$$4\sqrt 3 $$
2$$\sqrt 6 $$
48
24

Explanation

JEE Main 2019 (Online) 12th April Evening Slot Mathematics - Area Under The Curves Question 109 English Explanation y2 = 4$$\lambda $$x and y = $$\lambda x$$

If $$\lambda $$ > 0 then

Hence $$\int\limits_0^{4/\lambda } {(2\sqrt \lambda \sqrt x } - \lambda x)dx = {1 \over 9}$$

$$ \Rightarrow $$ $${\left( {{{2\sqrt \lambda {x^{3/2}}} \over {3/2}} - {{\lambda {x^2}} \over 2}} \right)^{{4 \over \lambda }}} = {1 \over 9}$$

$$ \Rightarrow $$ $${4 \over 3}\sqrt \lambda {8 \over {{\lambda ^{3/2}}}} - \lambda {8 \over {{\lambda ^2}}} = {1 \over 9}$$

$$ \Rightarrow $$ $${{32} \over {3\lambda }} - {8 \over \lambda } = {1 \over 9}$$

$$ \Rightarrow $$ $$ {8 \over 3\lambda } = {1 \over 9}$$

$$ \Rightarrow $$ $$\lambda $$ = 24

Comments (0)

Advertisement