JEE MAIN - Mathematics (2019 - 11th January Morning Slot - No. 3)
Let [x] denote the greatest integer less than or equal to x. Then $$\mathop {\lim }\limits_{x \to 0} {{\tan \left( {\pi {{\sin }^2}x} \right) + {{\left( {\left| x \right| - \sin \left( {x\left[ x \right]} \right)} \right)}^2}} \over {{x^2}}}$$
equals $$\pi $$ + 1
equals 0
does not exist
equals $$\pi $$
Explanation
R.H.L. $$=$$ $$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right) + {{\left( {\left| x \right| - \sin \left( {x\left[ x \right]} \right)} \right)}^2}} \over {{x^2}}}$$
(as x $$ \to $$ 0+ $$ \Rightarrow $$ [x] $$=$$ 0)
$$=$$ $$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right) + {x^2}} \over {{x^2}}}$$
$$=$$ $$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right)} \over {\left( {\pi {{\sin }^2}x} \right)}} + 1 = \pi + 1$$
L.H.L. $$=$$ $$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right) + {{\left( { - x + \sin x} \right)}^2}} \over {{x^2}}}$$
(as x $$ \to $$ 0$$-$$ $$ \Rightarrow $$ [x] $$=$$ $$-$$1)
$$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right)} \over {\pi {{\sin }^2}x}}\,.\,{{\pi {{\sin }^2}x} \over {{x^2}}} + {\left( { - 1 + {{\sin x} \over x}} \right)^2} \Rightarrow \pi $$
R.H.L. $$ \ne $$ L.H.L.
(as x $$ \to $$ 0+ $$ \Rightarrow $$ [x] $$=$$ 0)
$$=$$ $$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right) + {x^2}} \over {{x^2}}}$$
$$=$$ $$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right)} \over {\left( {\pi {{\sin }^2}x} \right)}} + 1 = \pi + 1$$
L.H.L. $$=$$ $$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right) + {{\left( { - x + \sin x} \right)}^2}} \over {{x^2}}}$$
(as x $$ \to $$ 0$$-$$ $$ \Rightarrow $$ [x] $$=$$ $$-$$1)
$$\mathop {\lim }\limits_{x \to {0^ + }} {{\tan \left( {\pi {{\sin }^2}x} \right)} \over {\pi {{\sin }^2}x}}\,.\,{{\pi {{\sin }^2}x} \over {{x^2}}} + {\left( { - 1 + {{\sin x} \over x}} \right)^2} \Rightarrow \pi $$
R.H.L. $$ \ne $$ L.H.L.
Comments (0)
