JEE MAIN - Mathematics (2019 - 11th January Morning Slot - No. 2)

If  xloge(logex) $$-$$ x2 + y2 = 4(y > 0), then $${{dy} \over {dx}}$$ at x = e is equal to :
$${{\left( {1 + 2e} \right)} \over {2\sqrt {4 + {e^2}} }}$$
$${{\left( {1 + 2e} \right)} \over {\sqrt {4 + {e^2}} }}$$
$${{\left( {2e - 1} \right)} \over {2\sqrt {4 + {e^2}} }}$$
$${e \over {\sqrt {4 + {e^2}} }}$$

Explanation

Differentiating with respect to x,

$$x.{1 \over {\ell nx}}.{1 \over x} + \ell n(\ell nx) - 2x + 2y.{{dy} \over {dx}} = 0$$

at   $$x = e$$  we get

$$1 - 2e + 2y{{dy} \over {dx}} = 0 \Rightarrow {{dy} \over {dx}} = {{2e - 1} \over {2y}}$$

$$ \Rightarrow {{dy} \over {dx}} = {{2e - 1} \over {2\sqrt {4 + {e^2}} }}\,\,$$

as   $$y(e) = \sqrt {4 + {e^2}} $$

Comments (0)

Advertisement