JEE MAIN - Mathematics (2019 - 11th January Morning Slot - No. 17)

Let $$f\left( x \right) = \left\{ {\matrix{ { - 1} & { - 2 \le x < 0} \cr {{x^2} - 1,} & {0 \le x \le 2} \cr } } \right.$$ and

$$g(x) = \left| {f\left( x \right)} \right| + f\left( {\left| x \right|} \right).$$

Then, in the interval (–2, 2), g is :
non continuous
differentiable at all points
not differentiable at two points
not differentiable at one point

Explanation

$$\left| {f\left( x \right)} \right| = \left\{ {\matrix{ 1 & , & { - 2 \le x < 0} \cr {1 - {x^2}} & , & {0 \le x < 1} \cr {{x^2} - 1} & , & {1 \le x \le 2} \cr } } \right.$$

and  $$f\left( {\left| x \right|} \right) = {x^2} - 1,x \in \left[ { - 2,2} \right]$$

Hence  $$g(x) = \left\{ {\matrix{ {{x^2}} & , & {x \in \left[ { - 2,0} \right]} \cr 0 & , & {x \in \left[ {0,1} \right)} \cr {2\left( {{x^2} - 1} \right)} & , & {x \in \left[ {1,2} \right]} \cr } } \right.$$

It is not differentiable at x = 1

Comments (0)

Advertisement