JEE MAIN - Mathematics (2019 - 11th January Evening Slot - No. 22)

Let $$\sqrt 3 \widehat i + \widehat j,$$    $$\widehat i + \sqrt 3 \widehat j$$  and   $$\beta \widehat i + \left( {1 - \beta } \right)\widehat j$$ respectively be the position vectors of the points A, B and C with respect to the origin O. If the distance of C from the bisector of the acute angle between OA and OB is $${3 \over {\sqrt 2 }}$$, then the sum of all possible values of $$\beta $$ is :
4
1
2
3

Explanation

Angle bisector is x $$-$$ y = 0

$$ \Rightarrow $$  $${{\left| {\beta - \left( {1 - \beta } \right)} \right|} \over {\sqrt 2 }} = {3 \over {\sqrt 2 }}$$

$$ \Rightarrow $$  $$\left| {2\beta - 1} \right| = 3$$

$$ \Rightarrow $$  $$\beta $$ = 2 or $$-$$ 1

Comments (0)

Advertisement