JEE MAIN - Mathematics (2019 - 10th January Morning Slot - No. 1)
If the system of equations
x + y + z = 5
x + 2y + 3z = 9
x + 3y + az = $$\beta $$
has infinitely many solutions, then $$\beta $$ $$-$$ $$\alpha $$ equals -
x + y + z = 5
x + 2y + 3z = 9
x + 3y + az = $$\beta $$
has infinitely many solutions, then $$\beta $$ $$-$$ $$\alpha $$ equals -
8
21
18
5
Explanation
$$D = \left| {\matrix{
1 & 1 & 1 \cr
1 & 2 & 3 \cr
1 & 3 & \alpha \cr
} } \right| = \left| {\matrix{
1 & 1 & 1 \cr
0 & 1 & 2 \cr
0 & 2 & {\alpha - 1} \cr
} } \right|$$
$$ = \left( {\alpha - 1} \right) - 4 = \left( {\alpha - 5} \right)$$
for infinite solutions $$D = 0 \Rightarrow \alpha = 5$$
$${D_x} = 0 \Rightarrow \left| {\matrix{ 5 & 1 & 1 \cr 9 & 2 & 3 \cr \beta & 3 & 5 \cr } } \right| = 0$$
$$ \Rightarrow \left| {\matrix{ 0 & 0 & 1 \cr { - 1} & { - 1} & 3 \cr {\beta - 15} & { - 2} & 5 \cr } } \right| = 0$$
$$ \Rightarrow 2 + \beta - 15 = 0 \Rightarrow \beta - 13 = 0$$
on $$\beta = 13$$ we get $${D_y} = {D_z} = 0$$
$$\alpha = 5,\beta = 13$$
$$ = \left( {\alpha - 1} \right) - 4 = \left( {\alpha - 5} \right)$$
for infinite solutions $$D = 0 \Rightarrow \alpha = 5$$
$${D_x} = 0 \Rightarrow \left| {\matrix{ 5 & 1 & 1 \cr 9 & 2 & 3 \cr \beta & 3 & 5 \cr } } \right| = 0$$
$$ \Rightarrow \left| {\matrix{ 0 & 0 & 1 \cr { - 1} & { - 1} & 3 \cr {\beta - 15} & { - 2} & 5 \cr } } \right| = 0$$
$$ \Rightarrow 2 + \beta - 15 = 0 \Rightarrow \beta - 13 = 0$$
on $$\beta = 13$$ we get $${D_y} = {D_z} = 0$$
$$\alpha = 5,\beta = 13$$
Comments (0)
