JEE MAIN - Mathematics (2019 - 10th January Evening Slot - No. 23)

The length of the chord of the parabola x2 $$=$$ 4y having equation x – $$\sqrt 2 y + 4\sqrt 2 = 0$$  is -
$$8\sqrt 2 $$
$$6\sqrt 3 $$
$$3\sqrt 2 $$
$$2\sqrt {11} $$

Explanation

x2 = 4y

x $$-$$ $$\sqrt 2 $$y + 4$$\sqrt 2 $$ = 0

Solving together we get

x2 = 4$$\left( {{{x + 4\sqrt 2 } \over {\sqrt 2 }}} \right)$$

$$\sqrt 2 $$x2 + 4x + 16$$\sqrt 2 $$

$$\sqrt 2 $$x2 $$-$$ 4x $$-$$ 16$$\sqrt 2 $$ = 0

x1 + x2 = 2$$\sqrt 2 $$; x1x2 = $${{ - 16\sqrt 2 } \over {\sqrt 2 }}$$ = $$-$$ 16

Similarly,

($$\sqrt 2 $$y $$-$$ 4$$\sqrt 2 $$)2 = 4y

2y2 + 32 $$-$$ 16y = 4y

JEE Main 2019 (Online) 10th January Evening Slot Mathematics - Parabola Question 106 English Explanation 1
JEE Main 2019 (Online) 10th January Evening Slot Mathematics - Parabola Question 106 English Explanation 2
$$\ell $$AB = $$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $$

$$ = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} + 64 + {{\left( {10} \right)}^2} - 4\left( {16} \right)} $$

$$ = \sqrt {8 + 64 + 100 - 64} $$

$$ = \sqrt {108} = 6\sqrt 3 $$

Comments (0)

Advertisement