JEE MAIN - Mathematics (2019 - 10th January Evening Slot - No. 17)
The value of $$\cot \left( {\sum\limits_{n = 1}^{19} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{p = 1}^n {2p} } \right)} \right)$$ is :
$${{22} \over {23}}$$
$${{23} \over {22}}$$
$${{21} \over {19}}$$
$${{19} \over {21}}$$
Explanation
$$\cot \left( {\sum\limits_{n = 1}^{19} {{{\cot }^{ - 1}}\left( {1 + n\left( {n + 1} \right)} \right.} } \right)$$
$$\cot \left( {\sum\limits_{n = 1}^{19} {{{\cot }^{ - 1}}\left( {{n^2} + n + 1} \right)} } \right) = \cot \left( {\sum\limits_{n = 1}^{19} {{{\tan }^{ - 1}}{1 \over {1 + n\left( {n + 1} \right)}}} } \right)$$
$$\sum\limits_{n = 1}^{19} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} $$
$$\cot \left( {{{\tan }^{ - 1}}20 - {{\tan }^{ - 1}}1} \right) = {{\cot A\cot \beta + 1} \over {\cot \beta - \cot A}}$$
(Where tanA $$=$$ 20, tanB $$=$$ 1) $${{1\left( {{1 \over {20}}} \right) + 1} \over {1 - {1 \over {20}}}} = {{21} \over {19}}$$
$$\cot \left( {\sum\limits_{n = 1}^{19} {{{\cot }^{ - 1}}\left( {{n^2} + n + 1} \right)} } \right) = \cot \left( {\sum\limits_{n = 1}^{19} {{{\tan }^{ - 1}}{1 \over {1 + n\left( {n + 1} \right)}}} } \right)$$
$$\sum\limits_{n = 1}^{19} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} $$
$$\cot \left( {{{\tan }^{ - 1}}20 - {{\tan }^{ - 1}}1} \right) = {{\cot A\cot \beta + 1} \over {\cot \beta - \cot A}}$$
(Where tanA $$=$$ 20, tanB $$=$$ 1) $${{1\left( {{1 \over {20}}} \right) + 1} \over {1 - {1 \over {20}}}} = {{21} \over {19}}$$
Comments (0)
