JEE MAIN - Mathematics (2018 - 16th April Morning Slot - No. 8)

Let A = $$\left[ {\matrix{ 1 & 0 & 0 \cr 1 & 1 & 0 \cr 1 & 1 & 1 \cr } } \right]$$ and B = A20. Then the sum of the elements of the first column of B is :
210
211
231
251

Explanation

A = $$\left[ {\matrix{ 1 & 0 & 0 \cr 1 & 1 & 0 \cr 1 & 1 & 1 \cr } } \right]$$

A2 = A.A = $$\left[ {\matrix{ 1 & 0 & 0 \cr 1 & 1 & 0 \cr 1 & 1 & 1 \cr } } \right] \times \left[ {\matrix{ 1 & 0 & 0 \cr 1 & 1 & 0 \cr 1 & 1 & 1 \cr } } \right]$$

=   $$\left[ {\matrix{ 1 & 0 & 0 \cr 2 & 1 & 0 \cr 3 & 2 & 1 \cr } } \right]$$

A3 = A2.A =  $$\left[ {\matrix{ 1 & 0 & 0 \cr 2 & 1 & 0 \cr 3 & 2 & 1 \cr } } \right] \times \left[ {\matrix{ 1 & 0 & 0 \cr 1 & 1 & 0 \cr 1 & 1 & 1 \cr } } \right]$$

=   $$\left[ {\matrix{ 1 & 0 & 0 \cr 3 & 1 & 0 \cr 6 & 3 & 1 \cr } } \right]$$

Similarly

A4 =   $$\left[ {\matrix{ 1 & 0 & 0 \cr 4 & 1 & 0 \cr {10} & 4 & 1 \cr } } \right]$$

From this we can say,

An =   $$\left[ {\matrix{ 1 & 0 & 0 \cr n & 1 & 0 \cr {{{n\left( {n + 1} \right)} \over 2}} & n & 1 \cr } } \right]$$

$$\therefore\,\,\,$$ A20 =   $$\left[ {\matrix{ 1 & 0 & 0 \cr {20} & 1 & 0 \cr {210} & {20} & 1 \cr } } \right]$$

$$\therefore\,\,\,$$ Sum of the first column

= 1 + 20 + 210

= 231

Comments (0)

Advertisement