JEE MAIN - Mathematics (2018 - 16th April Morning Slot - No. 6)

$$\mathop {\lim }\limits_{x \to 0} \,\,{{{{\left( {27 + x} \right)}^{{1 \over 3}}} - 3} \over {9 - {{\left( {27 + x} \right)}^{{2 \over 3}}}}}$$ equals.
$${1 \over 3}$$
$$-$$ $${1 \over 3}$$
$$-$$ $${1 \over 6}$$
$${1 \over 6}$$

Explanation

Given,

$$\mathop {lim}\limits_{x \to 0} \,{{{{\left( {27 + x} \right)}^{{1 \over 3}}} - 3} \over {9 - {{\left( {27 + x} \right)}^{{2 \over 3}}}}}$$

=   $$\mathop {\lim }\limits_{x \to 0} \,{{3\left[ {{{\left( {1 + {x \over {27}}} \right)}^{{1 \over 3}}} - 1} \right]} \over {9\left[ {1 - {{\left( {1 + {x \over {27}}} \right)}^{{2 \over 3}}}} \right]}}$$

=   $$\mathop {\lim }\limits_{x \to 0} \,\,{{\left( {1 + {x \over {3 \times 27}}} \right) - 1} \over {3\left[ {1 - \left( {1 + {{2x} \over {3 \times 27}}} \right)} \right]}}$$

=   $$\mathop {\lim }\limits_{x \to 0} \,\,{{{x \over {81}}} \over {3\left( { - {{2x} \over {81}}} \right)}} = - {1 \over 6}$$

Comments (0)

Advertisement