JEE MAIN - Mathematics (2018 - 16th April Morning Slot - No. 23)
If the area of the region bounded by the curves, $$y = {x^2},y = {1 \over x}$$ and the lines y = 0 and x= t (t >1) is 1 sq. unit, then t is equal to :
$${e^{{3 \over 2}}}$$
$${4 \over 3}$$
$${3 \over 2}$$
$${e^{{2 \over 3}}}$$
Explanation
_16th_April_Morning_Slot_en_23_1.png)
Point of intersection of y = x2 and y = $${1 \over x}$$.
put y = $${1 \over x}$$ in y = x2, then we get,
$${1 \over x} = {x^2}$$
$$ \Rightarrow $$ $$\,\,\,$$ x3 $$-$$ 1 = 0
$$ \Rightarrow $$ $$\,\,\,$$ x = 1
$$\therefore\,\,\,$$ y = 1
$$\therefore\,\,\,$$ point B = (1, 1)
Area of region ABCDA
= $$\int\limits_0^1 {{x^2}} $$ dx + $$\int\limits_1^t {{1 \over x}} $$ dx
$$=$$ $$\left[ {{{{x^3}} \over 3}} \right]_0^1$$ + $$\left[ {\ell n\,x} \right]_1^t$$
= $${1 \over 3}$$ + $$\ell n\,t$$ $$-$$ $$\ell n$$ 1
= $${1 \over 3}$$ + $$\ell n\,t$$ [ as $$\ell n$$ 1 = 0]
given this Area = 1 sq unit.
$$\therefore\,\,\,$$ $${1 \over 3}$$ + $$\ell n\,t$$ = 1
$$ \Rightarrow $$ $$\ell n\,t$$ = $${2 \over 3}$$
$$ \Rightarrow $$ t = e$${^{{2 \over 3}}}$$
Comments (0)
