JEE MAIN - Mathematics (2018 - 16th April Morning Slot - No. 23)

If the area of the region bounded by the curves, $$y = {x^2},y = {1 \over x}$$ and the lines y = 0 and x= t (t >1) is 1 sq. unit, then t is equal to :
$${e^{{3 \over 2}}}$$
$${4 \over 3}$$
$${3 \over 2}$$
$${e^{{2 \over 3}}}$$

Explanation

JEE Main 2018 (Online) 16th April Morning Slot Mathematics - Area Under The Curves Question 124 English Explanation

Point of intersection of y = x2 and y = $${1 \over x}$$.

put y = $${1 \over x}$$ in y = x2, then we get,

$${1 \over x} = {x^2}$$

$$ \Rightarrow $$ $$\,\,\,$$ x3 $$-$$ 1 = 0

$$ \Rightarrow $$ $$\,\,\,$$ x = 1

$$\therefore\,\,\,$$ y = 1

$$\therefore\,\,\,$$ point B = (1, 1)

Area of region ABCDA

= $$\int\limits_0^1 {{x^2}} $$ dx + $$\int\limits_1^t {{1 \over x}} $$ dx

$$=$$ $$\left[ {{{{x^3}} \over 3}} \right]_0^1$$ + $$\left[ {\ell n\,x} \right]_1^t$$

= $${1 \over 3}$$ + $$\ell n\,t$$ $$-$$ $$\ell n$$ 1

= $${1 \over 3}$$ + $$\ell n\,t$$     [ as    $$\ell n$$ 1 = 0]

given this Area = 1 sq unit.

$$\therefore\,\,\,$$ $${1 \over 3}$$ + $$\ell n\,t$$ = 1

$$ \Rightarrow $$    $$\ell n\,t$$ = $${2 \over 3}$$

$$ \Rightarrow $$    t = e$${^{{2 \over 3}}}$$

Comments (0)

Advertisement