JEE MAIN - Mathematics (2018 - 15th April Morning Slot - No. 9)
If the tangents drawn to the hyperbola 4y2 = x2 + 1 intersect the co-ordinate axes at the distinct points A and B then the locus of the mid point of AB is :
x2 $$-$$ 4y2 + 16x2y2 = 0
x2 $$-$$ 4y2 $$-$$ 16x2y2 = 0
4x2 $$-$$ y2 + 16x2y2 = 0
4x2 $$-$$ y2 $$-$$ 16x2y2 = 0
Explanation
Equation of hyperbola is :
4y2 = x2 + 1 $$ \Rightarrow $$ $$-$$ x2 + 4y2 = 1
$$ \Rightarrow $$ $$\,\,\,$$ $$-$$ $${{{x^2}} \over {{1^2}}}$$ + $${{{y^2}} \over {{{\left( {{1 \over 2}} \right)}^2}}}$$ = 1
$$ \therefore $$ a = 1, b = $${1 \over 2}$$
Now, tangent to the curve at point (x1, y1) is given by
4 $$ \times $$ 2y1$${{dy} \over {dx}}$$ = 2x1
$$ \Rightarrow $$ $${{dy} \over {dx}}$$ = $${{2{x_1}} \over {8{y_1}}}$$ = $${{{x_1}} \over {4{y_1}}}$$
Equation of tangent at (x1, y1) is
y = mx + c
$$ \Rightarrow $$ y = $${{{x_1}} \over {4{y_1}}}$$ . x + c
As tangent passes through (x1, y1)
$$ \therefore $$ y1 = $${{{x_1}{x_1}} \over {4{y_1}}} + c$$
$$ \Rightarrow $$ C = $${{4y_1^2 - x_1^2} \over {4{y_1}}}$$ = $${1 \over {4{y_1}}}$$
Therefore, y = $${{{x_1}} \over {4{y_1}}}x + {1 \over {4{y_1}}}$$
$$ \Rightarrow $$ 4y1y = x1x + 1
which intersects x axis at A $$\left( {{{ - 1} \over {{x_1}}},0} \right)$$ and y axis at $$B\left( {0,{1 \over {4{y_1}}}} \right)$$
Let midpoint of AB is (h, k)
$$ \therefore $$ h = $${{ - 1} \over {2{x_1}}}$$
$$ \Rightarrow $$$$\,\,\,$$ x1 = $${{ - 1} \over {2h}}$$ & y1 = $${1 \over {8k}}$$
Thus, 4$${\left( {{1 \over {8k}}} \right)^2}$$ = $${\left( {{{ - 1} \over {2h}}} \right)^2}$$ + 1
$$ \Rightarrow $$$$\,\,\,$$ $${1 \over {16{k^2}}}$$ = $${1 \over {4{h^2}}}$$ + 1
$$ \Rightarrow $$ $$\,\,\,$$ 1 = $${{16{k^2}} \over {4{h^2}}}$$ + 16k2
$$ \Rightarrow $$$$\,\,\,$$ h2 = 4k2 + 16h2 k.
So, required equation is
x2 $$-$$ 4y2 $$-$$ 16x2 y2 = 0
4y2 = x2 + 1 $$ \Rightarrow $$ $$-$$ x2 + 4y2 = 1
$$ \Rightarrow $$ $$\,\,\,$$ $$-$$ $${{{x^2}} \over {{1^2}}}$$ + $${{{y^2}} \over {{{\left( {{1 \over 2}} \right)}^2}}}$$ = 1
$$ \therefore $$ a = 1, b = $${1 \over 2}$$
Now, tangent to the curve at point (x1, y1) is given by
4 $$ \times $$ 2y1$${{dy} \over {dx}}$$ = 2x1
$$ \Rightarrow $$ $${{dy} \over {dx}}$$ = $${{2{x_1}} \over {8{y_1}}}$$ = $${{{x_1}} \over {4{y_1}}}$$
Equation of tangent at (x1, y1) is
y = mx + c
$$ \Rightarrow $$ y = $${{{x_1}} \over {4{y_1}}}$$ . x + c
As tangent passes through (x1, y1)
$$ \therefore $$ y1 = $${{{x_1}{x_1}} \over {4{y_1}}} + c$$
$$ \Rightarrow $$ C = $${{4y_1^2 - x_1^2} \over {4{y_1}}}$$ = $${1 \over {4{y_1}}}$$
Therefore, y = $${{{x_1}} \over {4{y_1}}}x + {1 \over {4{y_1}}}$$
$$ \Rightarrow $$ 4y1y = x1x + 1
which intersects x axis at A $$\left( {{{ - 1} \over {{x_1}}},0} \right)$$ and y axis at $$B\left( {0,{1 \over {4{y_1}}}} \right)$$
Let midpoint of AB is (h, k)
$$ \therefore $$ h = $${{ - 1} \over {2{x_1}}}$$
$$ \Rightarrow $$$$\,\,\,$$ x1 = $${{ - 1} \over {2h}}$$ & y1 = $${1 \over {8k}}$$
Thus, 4$${\left( {{1 \over {8k}}} \right)^2}$$ = $${\left( {{{ - 1} \over {2h}}} \right)^2}$$ + 1
$$ \Rightarrow $$$$\,\,\,$$ $${1 \over {16{k^2}}}$$ = $${1 \over {4{h^2}}}$$ + 1
$$ \Rightarrow $$ $$\,\,\,$$ 1 = $${{16{k^2}} \over {4{h^2}}}$$ + 16k2
$$ \Rightarrow $$$$\,\,\,$$ h2 = 4k2 + 16h2 k.
So, required equation is
x2 $$-$$ 4y2 $$-$$ 16x2 y2 = 0
Comments (0)
