JEE MAIN - Mathematics (2018 - 15th April Morning Slot - No. 6)

If $$\lambda $$ $$ \in $$ R is such that the sum of the cubes of the roots of the equation,
x2 + (2 $$-$$ $$\lambda $$) x + (10 $$-$$ $$\lambda $$) = 0 is minimum, then the magnitude of the difference of the roots of this equation is :
$$4\sqrt 2 $$
$$2\sqrt 5 $$
$$2\sqrt 7 $$
20

Explanation

Let $$\alpha $$, $$\beta $$ are the roots of the equation,

$$ \therefore $$ $$\alpha $$ + $$\beta $$ = $$\lambda $$ $$-$$ 2 and $$\alpha $$$$\beta $$ = 10 $$-$$ $$\lambda $$

$${\alpha ^3} + {\beta ^3}$$ = ($$\alpha $$ + $$\beta $$)3 $$-$$ 3$$\alpha $$$$\beta $$ ($$\alpha $$ + $$\beta $$)

= ($$\lambda $$ $$-$$ 2)3 $$-$$ 3(10 $$-$$ $$\lambda $$)($$\lambda $$ $$-$$ 2)

= $$\lambda ^3$$ $$-$$ 3$$\lambda ^2$$ $$-$$ 24$$\lambda $$ + 52

Let $$f(\lambda $$) = $$\lambda ^3$$ $$-$$ 3$$\lambda ^2$$ $$-$$ 24$$\lambda $$ + 52

$$ \therefore $$ $${{df(\lambda )} \over {d\lambda }}$$ = 3$$\lambda ^2$$ $$-$$ 6$$\lambda $$ $$-$$ 24

$$ \therefore $$ at maximum of minimum $${{df(\lambda )} \over {d\lambda }}$$ = 0

$$ \therefore $$ $$\lambda ^2$$ $$-$$ 2$$\lambda $$ $$-$$ 8 = 0

$$ \Rightarrow $$ ($$\lambda $$ + 2) ($$\lambda $$ $$-$$ 4) = 0

$$ \Rightarrow $$ $$\lambda $$ = $$-$$2, 4

$${{{d^2}f(\lambda )} \over {d{\lambda ^2}}}$$ = 2$$\lambda $$ $$-$$ 2

When $$\lambda $$ = $$-$$2

$${{{d^2}f(\lambda )} \over {d{\lambda ^2}}}$$ = $$-$$ 6 < 0

$$ \therefore $$ at $$\lambda $$ = $$-$$2, f($$\lambda $$) has maximum value.

When $$\lambda $$ = 4

$${{{d^2}f(\lambda )} \over {d{\lambda ^2}}}$$ = 6 > 0

$$ \therefore $$ at $$\lambda $$ = 4, f($$\lambda $$) has minimum value.

$$ \therefore $$ When $$\lambda $$ = 4 equation is,

x2 $$-$$ 2x + 6 = 0

$$ \therefore $$ ($$\alpha $$ $$-$$ $$\beta $$)2 = ($$\alpha $$ + $$\beta $$)2 $$-$$ 4$$\alpha \beta$$

$$ \Rightarrow $$ x2 $$-$$ 4 $$ \times $$ 6

= $$-$$ 20

$$ \Rightarrow $$ ($$\alpha $$ $$-$$ $$\beta $$) = $$2\sqrt 5 i$$

$$ \Rightarrow $$ $$\left| {\alpha - \beta } \right|$$ = $$2\sqrt 5$$ (ans)

Comments (0)

Advertisement