JEE MAIN - Mathematics (2018 - 15th April Morning Slot - No. 17)

The area (in sq. units) of the region

{x $$ \in $$ R : x $$ \ge $$ 0, y $$ \ge $$ 0, y $$ \ge $$ x $$-$$ 2  and y $$ \le $$ $$\sqrt x $$}, is :
$${{13} \over 3}$$
$${{8} \over 3}$$
$${{10} \over 3}$$
$${{5} \over 3}$$

Explanation

y = $$\sqrt x $$

y = x $$-$$ 2

$$\therefore\,\,\,$$ $$\sqrt x $$ = x $$-$$ 2

$$ \Rightarrow $$$$\,\,\,$$ x = x2 $$-$$ 4x + 4

x2 $$-$$ 5x + 4 = 0

x2 $$-$$ 4x $$-$$ x + 4 = 0

$$ \Rightarrow $$$$\,\,\,$$ x(x $$-$$ 4) $$-$$ (x $$-$$ 4) = 0

$$ \Rightarrow $$$$\,\,\,$$ (x $$-$$ 4) (x $$-$$ 1) = 0

$$\therefore\,\,\,$$ x = 4, 1

and y = 2, $$-$$ 1

$$\therefore\,\,\,$$ Their point of intersection (4, 2) and (1, $$-$$ 1)

JEE Main 2018 (Online) 15th April Morning Slot Mathematics - Area Under The Curves Question 125 English Explanation

Required area is shown in the shaded figure.

$$\therefore\,\,\,$$ Required area

= $$\int\limits_0^2 {\sqrt x \,dx + \int\limits_2^4 {\left( {\sqrt x - x + 2} \right)\,dx} } $$

= $$\int\limits_0^4 {\sqrt x \,dx + \int\limits_2^4 {\left( {2 - x} \right)\,dx} } $$

= $$\left[ {{2 \over 3}{x^{{3 \over 2}}}} \right]_0^4 + \left[ {2x - {{{x^2}} \over 2}} \right]_2^4$$

= $${2 \over 3}\left( 8 \right)$$ + 2$$\left( {4 - 2} \right)$$ $$-$$ $${1 \over 2}$$ (16 $$-$$ 4)

= $${{16} \over 3}$$ + 4 $$-$$ 6

= $${{10} \over 3}$$

Comments (0)

Advertisement