JEE MAIN - Mathematics (2018 - 15th April Morning Slot - No. 13)

If $$\overrightarrow a ,\,\,\overrightarrow b ,$$ and $$\overrightarrow C $$ are unit vectors such that $$\overrightarrow a + 2\overrightarrow b + 2\overrightarrow c = \overrightarrow 0 ,$$ then $$\left| {\overrightarrow a \times \overrightarrow c } \right|$$ is equal to :
$${{\sqrt {15} } \over 4}$$
$${{1} \over {4}}$$
$${{15} \over {16}}$$
$${{\sqrt {15} } \over 16}$$

Explanation

Given,

$$\overrightarrow a + 2\overrightarrow b + 2\overrightarrow c = \overrightarrow 0 $$

$$ \Rightarrow $$ $$\overrightarrow a + 2\overrightarrow c = - 2\overrightarrow b $$

Squaring both sides,

$${\left| {\overrightarrow a } \right|^2} + 4\overrightarrow a .\overrightarrow c + 4{\left| {\overrightarrow c } \right|^2} = 4{\left| {\overrightarrow b } \right|^2}$$

$$ \Rightarrow $$ 1 + $$4\overrightarrow a .\overrightarrow c $$ + 4 = 4   [as $$\left| {\overrightarrow a } \right|^2$$ = $$\left| {\overrightarrow b } \right|^2$$ = $$\left| {\overrightarrow c } \right|^2$$ = 1]

$$ \Rightarrow $$ $$\overrightarrow a .\overrightarrow c = - {1 \over 4}$$

$$ \Rightarrow $$ $$\left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\cos \theta = - {1 \over 4}$$

$$ \therefore $$ $$\cos \theta $$ = $$ - {1 \over 4}$$

$$ \therefore $$ $$\sin ^2 \theta $$ = 1 - $$\cos ^2 \theta $$

= 1 - $$1 \over 16$$

= $$15\over 16$$

$$ \therefore $$ sin$$\theta $$ = $${{\sqrt {15} } \over 4}$$

$$ \therefore $$ $$\left| {\overrightarrow a \times \overrightarrow c } \right| = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\sin \theta $$

= 1 . 1 . $${{\sqrt {15} } \over 4}$$

= $${{\sqrt {15} } \over 4}$$

Comments (0)

Advertisement