JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 5)

Suppose A is any 3$$ \times $$ 3 non-singular matrix and ( A $$-$$ 3I) (A $$-$$ 5I) = O where I = I3 and O = O3. If $$\alpha $$A + $$\beta $$A-1 = 4I, then $$\alpha $$ + $$\beta $$ is equal to :
8
7
13
12

Explanation

Given,

( A $$-$$ 3I) (A $$-$$ 5I) = O

$$ \Rightarrow $$ A2 - 8A + 15I = O

Multiplying both sides by A- 1, we get,

A- 1A.A - 8A- 1A + 15A- 1I = A- 1O

$$ \Rightarrow $$ A - 8I + 15A- 1 = O

$$ \Rightarrow $$ A + 15A- 1 = 8I

$$ \Rightarrow $$$${A \over 2} + {{15{A^{ - 1}}} \over 2} = 4I$$

Comparing with the equation $$\alpha $$A + $$\beta $$A-1 = 4I, we get

$$\alpha $$ = $${1 \over 2}$$ and $$\beta $$ = $${15 \over 2}$$

$$ \therefore $$ $$\alpha $$ + $$\beta $$ = $${1 \over 2}$$ + $${15 \over 2}$$ = $${16 \over 2}$$ = 8

Comments (0)

Advertisement