JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 22)

$$\mathop {\lim }\limits_{x \to 0} {{x\tan 2x - 2x\tan x} \over {{{\left( {1 - \cos 2x} \right)}^2}}}$$ equals :
$${1 \over 4}$$
1
$${1 \over 2}$$
$$-$$ $${1 \over 2}$$

Explanation

Let, L = $$\mathop {\lim }\limits_{x \to 0} {{\left( {x\tan 2x - 2x\tan x} \right)} \over {{{\left( {1 - \cos 2x} \right)}^2}}}$$ = $$\mathop {\lim }\limits_{x \to 0} K$$ (say)

$$ \Rightarrow $$ K = $${{x\left[ {{{2\tan x} \over {1 - {{\left( {\tan x} \right)}^2}}}} \right] - 2x\tan x} \over {{{\left( {1 - \left( {1 - 2{{\sin }^2}x} \right)} \right)}^2}}}$$

= $${{2x\tan x - \left[ {2x\tan x - 2x{{\tan }^3}x} \right]} \over {4{{\sin }^4}x \times (1 - {{\tan }^2}x)}}$$

= $${{2x{{\tan }^3}x} \over {4{{\sin }^4}x \times \left( {1 - {{\tan }^2}x} \right)}}$$

= $${{2x{{\tan }^3}x} \over {4{{\sin }^4}x \times \left( {{{{{\cos }^2}x - {{\sin }^2}x} \over {{{\cos }^2}x}}} \right)}}$$

= $${{2x{{{{\sin }^3}x} \over {{{\cos }^3}x}}} \over {4{{\sin }^4}x \times \left( {{{{{\cos }^2}x - {{\sin }^2}x} \over {{{\cos }^2}x}}} \right)}}$$

$$ \Rightarrow $$K = $${x \over {2\sin x \times ({{\cos }^2}x - {{\sin }^2}x)\cos x}}$$

$$\therefore\,\,\,$$ L = $$\mathop {\lim }\limits_{x \to 0} $$ $${x \over {2\sin x}} \times \mathop {\lim }\limits_{x \to 0} {1 \over {\cos x({{\cos }^2}x - {{\sin }^2}x)}}$$

= $$\mathop {\lim }\limits_{x \to 0} $$ $${x \over {2\sin x}} \times \mathop {\lim }\limits_{x \to 0} {1 \over {\cos 0\left( {{{\cos }^2}0 - {{\sin }^2}0} \right)}}$$

= $${1 \over 2}$$

Comments (0)

Advertisement