JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 21)

Let f(x) = $$\left\{ {\matrix{ {{{\left( {x - 1} \right)}^{{1 \over {2 - x}}}},} & {x > 1,x \ne 2} \cr {k\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {,x = 2} \cr } } \right.$$

Thevaue of k for which f s continuous at x = 2 is :
1
e
e-1
e-2

Explanation

Since f(x) is continuous at x = 2.

$$\therefore\,\,\,$$$$\mathop {\lim }\limits_{x \to 2} $$ f(x) = f(2)

$$ \Rightarrow $$  $$\mathop {\lim }\limits_{x \to 2} $$ $${\left( {x - 1} \right)^{{1 \over {2 - x}}}}$$ = k    ($${{1^\infty }}$$  form)

$$ \therefore $$  $${{e^l}}$$ = k

Where $$l$$ = $$\mathop {\lim }\limits_{x \to 2} $$(x $$-$$ $$l$$ $$-$$ 1) $$ \times $$ $${1 \over {2 - x}}$$ = $$\mathop {\lim }\limits_{x \to 2} {{x - 2} \over {2 - x}}$$

= $$\mathop {\lim }\limits_{x \to 2} \left( {{{x - 2} \over {x - 2}}} \right)$$

$$ \Rightarrow $$    k = e$$-$$1

Comments (0)

Advertisement