JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 20)
If f(x) = sin-1 $$\left( {{{2 \times {3^x}} \over {1 + {9^x}}}} \right),$$ then f'$$\left( { - {1 \over 2}} \right)$$ equals :
$$ - \sqrt 3 {\log _e}\sqrt 3 $$
$$ \sqrt 3 {\log _e}\sqrt 3 $$
$$ - \sqrt 3 {\log _e}\, 3 $$
$$ \sqrt 3 {\log _e}\, 3 $$
Explanation
Since f(x) = sin$$\left( {{{2 \times {3^x}} \over {1 + {9^x}}}} \right)$$
Suppose 3x = tan t
$$ \Rightarrow $$ f(x) = sin$$-$$1 $$\left( {{{2\tan t} \over {1 + {{\tan }^2}t}}} \right)$$ = sin$$-$$1 (sin2t) = 2t
= 2tan$$-$$1 (3x)
So, f'(x) = $${2 \over {1 + {{\left( {{3^x}} \right)}^2}}} \times {3^x}.{\log _e}3$$
$$ \therefore $$ f '$$\left( { - {1 \over 2}} \right)$$ = $${2 \over {1 + {{\left( {{3^{ - {1 \over 2}}}} \right)}^2}}} \times {3^{ - {1 \over 2}}}$$ . loge 3
= $${1 \over 2} \times \sqrt 3 \times {\log _e}3$$ = $$\sqrt 3 \times {\log _e}\sqrt 3 $$
Suppose 3x = tan t
$$ \Rightarrow $$ f(x) = sin$$-$$1 $$\left( {{{2\tan t} \over {1 + {{\tan }^2}t}}} \right)$$ = sin$$-$$1 (sin2t) = 2t
= 2tan$$-$$1 (3x)
So, f'(x) = $${2 \over {1 + {{\left( {{3^x}} \right)}^2}}} \times {3^x}.{\log _e}3$$
$$ \therefore $$ f '$$\left( { - {1 \over 2}} \right)$$ = $${2 \over {1 + {{\left( {{3^{ - {1 \over 2}}}} \right)}^2}}} \times {3^{ - {1 \over 2}}}$$ . loge 3
= $${1 \over 2} \times \sqrt 3 \times {\log _e}3$$ = $$\sqrt 3 \times {\log _e}\sqrt 3 $$
Comments (0)
