JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 17)
If $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$
$${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$ and
$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx;$$ then
$${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$ and
$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx;$$ then
I2 > I3 > I1
I2 > I1 > I3
I3 > I2 > I1
I3 > I1 > I2
Explanation
Given,
$${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$
$${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$ and
$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx$$
For x $$ \in $$ (0, 1)
$$ \Rightarrow $$ x > x2 or $$-$$ x < $$-$$ x2
and x2 > x3 or $$-$$ x2 < $$-$$ x3
$$ \therefore $$ $${e^{ - {x^2}}}$$ < $${e^{ - {x^3}}}$$ and $${e^{ - x}}$$ < $${e^{ - {x^2}}}$$
$$ \Rightarrow $$ $${e^{ - x}} < {e^{ - {x^2}}} < {e^{ - {x^3}}}$$
$$ \Rightarrow $$ $${e^{ - {x^3}}} > {e^{ - {x^2}}} > {e^{ - x}}$$
$$ \Rightarrow $$ $${I_3} > {I_2} > {I_1}$$
$${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$
$${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$ and
$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx$$
For x $$ \in $$ (0, 1)
$$ \Rightarrow $$ x > x2 or $$-$$ x < $$-$$ x2
and x2 > x3 or $$-$$ x2 < $$-$$ x3
$$ \therefore $$ $${e^{ - {x^2}}}$$ < $${e^{ - {x^3}}}$$ and $${e^{ - x}}$$ < $${e^{ - {x^2}}}$$
$$ \Rightarrow $$ $${e^{ - x}} < {e^{ - {x^2}}} < {e^{ - {x^3}}}$$
$$ \Rightarrow $$ $${e^{ - {x^3}}} > {e^{ - {x^2}}} > {e^{ - x}}$$
$$ \Rightarrow $$ $${I_3} > {I_2} > {I_1}$$
Comments (0)
