JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 17)

If   $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$

   $${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$  and

$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx;$$ then
I2  >  I3  >  I1
I2  >  I1  >  I3
I3  >  I2  >  I1
I3  >  I1  >  I2

Explanation

Given,

$${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$

$${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$ and

$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx$$

For x $$ \in $$ (0, 1)

$$ \Rightarrow $$  x > x2 or $$-$$ x < $$-$$ x2

and x2 > x3 or $$-$$ x2 < $$-$$ x3

$$ \therefore $$ $${e^{ - {x^2}}}$$ < $${e^{ - {x^3}}}$$ and $${e^{ - x}}$$ < $${e^{ - {x^2}}}$$

$$ \Rightarrow $$ $${e^{ - x}} < {e^{ - {x^2}}} < {e^{ - {x^3}}}$$

$$ \Rightarrow $$ $${e^{ - {x^3}}} > {e^{ - {x^2}}} > {e^{ - x}}$$

$$ \Rightarrow $$ $${I_3} > {I_2} > {I_1}$$

Comments (0)

Advertisement