JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 13)
The foot of the perpendicular drawn from the origin, on the line, 3x + y = $$\lambda $$ ($$\lambda $$ $$ \ne $$ 0) is P. If the line meets x-axis at A and y-axis at B, then the ratio BP : PA is :
1 : 3
3 : 1
1 : 9
9 : 1
Explanation
Equation of the line, which is perpendicular to the line,
3x + y = $$\lambda $$($$\lambda $$ $$ \ne $$0) and passing through origin ,
is given by $${{x - 0} \over 3} = {{y - 0} \over 1} = r$$
For foot of perpendicular
r = $${{ - \left( {\left( {3 \times 0} \right) + \left( {1 \times 0} \right) - \lambda } \right)} \over {{3^2} + {1^2}}}$$ = $${\lambda \over {10}}$$
So, foot of perpendicular P = $$\left( {{{3\lambda } \over {10}},{\lambda \over {10}}} \right)$$
Given the line meets X-axis where y = 0, so 3x + 0 = $$\lambda $$
$$ \Rightarrow $$ x = $${\lambda \over 3}$$
Hence, coordinates of A = $$\left( {{\lambda \over 3},0} \right)$$ and meets
Y-axis at B = (0, $$\lambda $$)
So, BP = $$\sqrt {{{\left( {{{3\lambda } \over {10}}} \right)}^2} + {{\left( {{\lambda \over {10}} - \lambda } \right)}^2}} $$
$$ \Rightarrow $$ BP = $$\sqrt {{{9{\lambda ^2}} \over {100}} + {{81{\lambda ^2}} \over {100}}} $$
= BP = $$\sqrt {{{90{\lambda ^2}} \over {100}}} $$
Now, PA = $$\sqrt {{{\left( {{\lambda \over 3} - {{3\lambda } \over {10}}} \right)}^2} + {{\left( {0 - {\lambda \over {10}}} \right)}^2}} $$
$$ \Rightarrow $$$$\,\,\,$$ PA = $$\sqrt {{{{\lambda ^2}} \over {900}} + {{{\lambda ^2}} \over {100}}} \Rightarrow PA$$ = $$\sqrt {{{10{\lambda ^2}} \over {900}}} $$
Therefore BP : PA = 9 : 1
3x + y = $$\lambda $$($$\lambda $$ $$ \ne $$0) and passing through origin ,
is given by $${{x - 0} \over 3} = {{y - 0} \over 1} = r$$
For foot of perpendicular
r = $${{ - \left( {\left( {3 \times 0} \right) + \left( {1 \times 0} \right) - \lambda } \right)} \over {{3^2} + {1^2}}}$$ = $${\lambda \over {10}}$$
So, foot of perpendicular P = $$\left( {{{3\lambda } \over {10}},{\lambda \over {10}}} \right)$$
Given the line meets X-axis where y = 0, so 3x + 0 = $$\lambda $$
$$ \Rightarrow $$ x = $${\lambda \over 3}$$
Hence, coordinates of A = $$\left( {{\lambda \over 3},0} \right)$$ and meets
Y-axis at B = (0, $$\lambda $$)
So, BP = $$\sqrt {{{\left( {{{3\lambda } \over {10}}} \right)}^2} + {{\left( {{\lambda \over {10}} - \lambda } \right)}^2}} $$
$$ \Rightarrow $$ BP = $$\sqrt {{{9{\lambda ^2}} \over {100}} + {{81{\lambda ^2}} \over {100}}} $$
= BP = $$\sqrt {{{90{\lambda ^2}} \over {100}}} $$
Now, PA = $$\sqrt {{{\left( {{\lambda \over 3} - {{3\lambda } \over {10}}} \right)}^2} + {{\left( {0 - {\lambda \over {10}}} \right)}^2}} $$
$$ \Rightarrow $$$$\,\,\,$$ PA = $$\sqrt {{{{\lambda ^2}} \over {900}} + {{{\lambda ^2}} \over {100}}} \Rightarrow PA$$ = $$\sqrt {{{10{\lambda ^2}} \over {900}}} $$
Therefore BP : PA = 9 : 1
Comments (0)
