JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 11)
An angle between the lines whose direction cosines are gien by the equations,
$$l$$ + 3m + 5n = 0 and 5$$l$$m $$-$$ 2mn + 6n$$l$$ = 0, is :
$$l$$ + 3m + 5n = 0 and 5$$l$$m $$-$$ 2mn + 6n$$l$$ = 0, is :
$${\cos ^{ - 1}}\left( {{1 \over 3}} \right)$$
$${\cos ^{ - 1}}\left( {{1 \over 4}} \right)$$
$${\cos ^{ - 1}}\left( {{1 \over 6}} \right)$$
$${\cos ^{ - 1}}\left( {{1 \over 8}} \right)$$
Explanation
Given
l + 3m + 5n = 0
and 5$$l$$m $$-$$ 2mn + 6n$$l$$ = 0
From eq. (1) we have
$$l$$ = $$-$$ 3m $$-$$ 5n
Put the value of $$l$$ in eq. (2), we get ;
5 ($$-$$3m $$-$$5n) m $$-$$ 2mn + 6n ($$-$$ 3m $$-$$ 5n) = 0
$$ \Rightarrow $$ 15m2 + 45mn + 30n2 = 0
$$ \Rightarrow $$ m2 + 3mn + 2n2 = 0
$$ \Rightarrow $$ m2 + 2mn + mn + 2n2 = 0
$$ \Rightarrow $$ $$\,\,\,$$ (m + n) (m + 2n) = 0
$$ \therefore $$ m = $$-$$ n or m = $$-$$ 2n
For m = $$-n, $$ $$l$$ = $$-$$ 2n
And for m = $$-$$ 2n, $$l$$ = n
$$ \therefore $$ ($$l$$, m, n) = ($$-$$2n, $$-$$n, n) Or ($$l$$, m, n) = (n, $$-$$ 2n, n)
$$ \Rightarrow $$ ($$l$$, m, n) = ($$-$$2, $$-$$1, 1) Or ($$l$$, m, n) = (1, $$-$$ 2, 1)
Therefore, angle between the lines is given as :
cos ($$\theta $$) = $${{\left( { - 2} \right)\left( 1 \right) + \left( { - 1} \right).\left( { - 2} \right) + \left( 1 \right)\left( 1 \right)} \over {\sqrt 6 .\sqrt 6 }}$$
$$ \Rightarrow $$ cos ($$\theta $$) = $${1 \over 6}$$ $$ \Rightarrow $$ $$\theta $$ =cos$$-$$1 $$\left( {{1 \over 6}} \right)$$
l + 3m + 5n = 0
and 5$$l$$m $$-$$ 2mn + 6n$$l$$ = 0
From eq. (1) we have
$$l$$ = $$-$$ 3m $$-$$ 5n
Put the value of $$l$$ in eq. (2), we get ;
5 ($$-$$3m $$-$$5n) m $$-$$ 2mn + 6n ($$-$$ 3m $$-$$ 5n) = 0
$$ \Rightarrow $$ 15m2 + 45mn + 30n2 = 0
$$ \Rightarrow $$ m2 + 3mn + 2n2 = 0
$$ \Rightarrow $$ m2 + 2mn + mn + 2n2 = 0
$$ \Rightarrow $$ $$\,\,\,$$ (m + n) (m + 2n) = 0
$$ \therefore $$ m = $$-$$ n or m = $$-$$ 2n
For m = $$-n, $$ $$l$$ = $$-$$ 2n
And for m = $$-$$ 2n, $$l$$ = n
$$ \therefore $$ ($$l$$, m, n) = ($$-$$2n, $$-$$n, n) Or ($$l$$, m, n) = (n, $$-$$ 2n, n)
$$ \Rightarrow $$ ($$l$$, m, n) = ($$-$$2, $$-$$1, 1) Or ($$l$$, m, n) = (1, $$-$$ 2, 1)
Therefore, angle between the lines is given as :
cos ($$\theta $$) = $${{\left( { - 2} \right)\left( 1 \right) + \left( { - 1} \right).\left( { - 2} \right) + \left( 1 \right)\left( 1 \right)} \over {\sqrt 6 .\sqrt 6 }}$$
$$ \Rightarrow $$ cos ($$\theta $$) = $${1 \over 6}$$ $$ \Rightarrow $$ $$\theta $$ =cos$$-$$1 $$\left( {{1 \over 6}} \right)$$
Comments (0)
