JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 1)

If  a,   b,   c  are in A.P. and  a2,  b2,  c2 are in G.P. such that
a < b < c and   a + b + c = $${3 \over 4},$$ then the value of a is :
$${1 \over 4} - {1 \over {4\sqrt 2 }}$$
$${1 \over 4} - {1 \over {3\sqrt 2 }}$$
$${1 \over 4} - {1 \over {2\sqrt 2 }}$$
$${1 \over 4} - {1 \over {\sqrt 2 }}$$

Explanation

$$ \because $$$$\,\,\,$$a, b, c are in A.P. then

a + c = 2b

also it is given that,

a + b + c = $${{3 \over 4}}$$                          . . . .(1)

$$ \Rightarrow $$$$\,\,\,$$ 2b + b = $${{3 \over 4}}$$   $$ \Rightarrow $$$$\,\,\,$$ b = $${{1 \over 4}}$$  . . . . .(2)

Again it is given that, a2, b2, c2 are in G.P. then

(b2)2 = a2c2   $$ \Rightarrow $$  ac = $$ \pm $$ $${{1 \over {16}}}$$      . . . . (3)

From (1), (2) and (3), we get;

$$a \pm {1 \over {16a}}$$ = $${1 \over 2}$$  $$ \Rightarrow $$ 16a2 $$-$$ 8a $$ \pm $$ 1 = 0

Case I : 16a2 $$-$$ 8a + 1 = 0

$$ \Rightarrow $$$$\,\,\,$$a = $${1 \over 4}$$ (not possible as a < b)

Case II: 16a2 $$-$$ 8a $$-$$ 1 = 0 

$$ \Rightarrow $$$$\,\,\,$$ a = $${{8 \pm \sqrt {128} } \over {32}}$$

$$ \Rightarrow $$$$\,\,\,$$ a = $${1 \over 4} \pm {1 \over {2\sqrt 2 }}$$

$$ \therefore $$$$\,\,\,$$ a = $${1 \over 4} - {1 \over {2\sqrt 2 }}$$   ($$ \because $$ a < b)

Comments (0)

Advertisement