JEE MAIN - Mathematics (2018 - 15th April Evening Slot - No. 1)
If a, b, c are in A.P. and a2, b2, c2 are in G.P. such that
a < b < c and a + b + c = $${3 \over 4},$$ then the value of a is :
a < b < c and a + b + c = $${3 \over 4},$$ then the value of a is :
$${1 \over 4} - {1 \over {4\sqrt 2 }}$$
$${1 \over 4} - {1 \over {3\sqrt 2 }}$$
$${1 \over 4} - {1 \over {2\sqrt 2 }}$$
$${1 \over 4} - {1 \over {\sqrt 2 }}$$
Explanation
$$ \because $$$$\,\,\,$$a, b, c are in A.P. then
a + c = 2b
also it is given that,
a + b + c = $${{3 \over 4}}$$ . . . .(1)
$$ \Rightarrow $$$$\,\,\,$$ 2b + b = $${{3 \over 4}}$$ $$ \Rightarrow $$$$\,\,\,$$ b = $${{1 \over 4}}$$ . . . . .(2)
Again it is given that, a2, b2, c2 are in G.P. then
(b2)2 = a2c2 $$ \Rightarrow $$ ac = $$ \pm $$ $${{1 \over {16}}}$$ . . . . (3)
From (1), (2) and (3), we get;
$$a \pm {1 \over {16a}}$$ = $${1 \over 2}$$ $$ \Rightarrow $$ 16a2 $$-$$ 8a $$ \pm $$ 1 = 0
Case I : 16a2 $$-$$ 8a + 1 = 0
$$ \Rightarrow $$$$\,\,\,$$a = $${1 \over 4}$$ (not possible as a < b)
Case II: 16a2 $$-$$ 8a $$-$$ 1 = 0
$$ \Rightarrow $$$$\,\,\,$$ a = $${{8 \pm \sqrt {128} } \over {32}}$$
$$ \Rightarrow $$$$\,\,\,$$ a = $${1 \over 4} \pm {1 \over {2\sqrt 2 }}$$
$$ \therefore $$$$\,\,\,$$ a = $${1 \over 4} - {1 \over {2\sqrt 2 }}$$ ($$ \because $$ a < b)
a + c = 2b
also it is given that,
a + b + c = $${{3 \over 4}}$$ . . . .(1)
$$ \Rightarrow $$$$\,\,\,$$ 2b + b = $${{3 \over 4}}$$ $$ \Rightarrow $$$$\,\,\,$$ b = $${{1 \over 4}}$$ . . . . .(2)
Again it is given that, a2, b2, c2 are in G.P. then
(b2)2 = a2c2 $$ \Rightarrow $$ ac = $$ \pm $$ $${{1 \over {16}}}$$ . . . . (3)
From (1), (2) and (3), we get;
$$a \pm {1 \over {16a}}$$ = $${1 \over 2}$$ $$ \Rightarrow $$ 16a2 $$-$$ 8a $$ \pm $$ 1 = 0
Case I : 16a2 $$-$$ 8a + 1 = 0
$$ \Rightarrow $$$$\,\,\,$$a = $${1 \over 4}$$ (not possible as a < b)
Case II: 16a2 $$-$$ 8a $$-$$ 1 = 0
$$ \Rightarrow $$$$\,\,\,$$ a = $${{8 \pm \sqrt {128} } \over {32}}$$
$$ \Rightarrow $$$$\,\,\,$$ a = $${1 \over 4} \pm {1 \over {2\sqrt 2 }}$$
$$ \therefore $$$$\,\,\,$$ a = $${1 \over 4} - {1 \over {2\sqrt 2 }}$$ ($$ \because $$ a < b)
Comments (0)
