JEE MAIN - Mathematics (2018 (Offline) - No. 7)
Let $${a_1}$$, $${a_2}$$, $${a_3}$$, ......... ,$${a_{49}}$$ be in A.P. such that
$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$$ and $${a_9} + {a_{43}} = 66$$.
$$a_1^2 + a_2^2 + ....... + a_{17}^2 = 140m$$, then m is equal to
$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$$ and $${a_9} + {a_{43}} = 66$$.
$$a_1^2 + a_2^2 + ....... + a_{17}^2 = 140m$$, then m is equal to
33
66
68
34
Explanation
a1, a2, a3 . . . a43 are in AP
So, a2 = a1 + d
a3 = a1 + 2d
.
.
.
a49 =a1 + 48d
Now given, $${a_9} + {a_{43}} = 66$$
$$ \Rightarrow \,\,\,\,$$ a1 + 8d + a1 + 42d = 66
$$ \Rightarrow \,\,\,\,$$ 2a1 + 50d = 66
$$ \Rightarrow \,\,\,\,$$ a1 + 25d = 33 . . . . . (1)
$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} $$ = 416
$$ \Rightarrow \,\,\,\,$$ a1 + a5 + a9 + a13 +. . . . . 13 items = 416
$$ \Rightarrow \,\,\,\,$$ a1 + a1 + 4d + a1 + 8d + . . . . a1 + 48d = 416
$$ \Rightarrow \,\,\,\,$$ 13a1 + 4d +8d + 12d + . . . . . 48d = 416
$$ \Rightarrow \,\,\,\,$$ 13a1 + 4 (1+ 2 + 3 + . . . + 12) d = 416
$$ \Rightarrow \,\,\,\,13\,\,a{}_1 + \,4\,\, \times \,{{12 \times 13} \over 2} \times $$d = 416
$$ \Rightarrow \,\,\,\,$$ 13a1 + 24 $$ \times$$ 13d = 416
$$ \Rightarrow \,\,\,\,$$ a1 + 24 d =32 . . . .(2)
Solving (1) and (2) we get,
d = 1
and $${a_1} = 8$$
$$\therefore\,\,\,$$ a1 = 8
a2 = 8 + 1 = 9
a3 = 8 + 2 = 10
.
.
.
a17 = 8 + 16 = 24
Now, $$a_1^2 + a{}_2^2 + ......\,\, + a_{17}^2\,\, = \,\,140m$$
$$ \Rightarrow \,\,\,\,$$ $$a_1^2 + a{}_2^2 + ......\,\, + a_{17}^2 = 140\,m$$
$$ \Rightarrow \,\,\,\,\,{8^2}\, + \,\,{9^2}\, + \,{10^2} + ......{(24)^2} = 140\,m$$
We can write above series like this,
$$ \Rightarrow \,\,\,\,\,$$ (12 +22 + . . . . +242) $$-$$ (12 + 22 + . . . . .+ 72) = 140 m
$$ \Rightarrow {{24\left( {25} \right)\left( {49} \right)} \over 6} - {{7 \times 8 \times 15} \over 6} = 140\,m$$
$$ \Rightarrow \,\,\,\,\,$$ 490 $$-$$ 140 = 140 m
$$ \Rightarrow \,\,\,\,\,$$4760 = 140 m
$$ \Rightarrow \,\,\,\,\,$$ m = 34
So, a2 = a1 + d
a3 = a1 + 2d
.
.
.
a49 =a1 + 48d
Now given, $${a_9} + {a_{43}} = 66$$
$$ \Rightarrow \,\,\,\,$$ a1 + 8d + a1 + 42d = 66
$$ \Rightarrow \,\,\,\,$$ 2a1 + 50d = 66
$$ \Rightarrow \,\,\,\,$$ a1 + 25d = 33 . . . . . (1)
$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} $$ = 416
$$ \Rightarrow \,\,\,\,$$ a1 + a5 + a9 + a13 +. . . . . 13 items = 416
$$ \Rightarrow \,\,\,\,$$ a1 + a1 + 4d + a1 + 8d + . . . . a1 + 48d = 416
$$ \Rightarrow \,\,\,\,$$ 13a1 + 4d +8d + 12d + . . . . . 48d = 416
$$ \Rightarrow \,\,\,\,$$ 13a1 + 4 (1+ 2 + 3 + . . . + 12) d = 416
$$ \Rightarrow \,\,\,\,13\,\,a{}_1 + \,4\,\, \times \,{{12 \times 13} \over 2} \times $$d = 416
$$ \Rightarrow \,\,\,\,$$ 13a1 + 24 $$ \times$$ 13d = 416
$$ \Rightarrow \,\,\,\,$$ a1 + 24 d =32 . . . .(2)
Solving (1) and (2) we get,
d = 1
and $${a_1} = 8$$
$$\therefore\,\,\,$$ a1 = 8
a2 = 8 + 1 = 9
a3 = 8 + 2 = 10
.
.
.
a17 = 8 + 16 = 24
Now, $$a_1^2 + a{}_2^2 + ......\,\, + a_{17}^2\,\, = \,\,140m$$
$$ \Rightarrow \,\,\,\,$$ $$a_1^2 + a{}_2^2 + ......\,\, + a_{17}^2 = 140\,m$$
$$ \Rightarrow \,\,\,\,\,{8^2}\, + \,\,{9^2}\, + \,{10^2} + ......{(24)^2} = 140\,m$$
We can write above series like this,
$$ \Rightarrow \,\,\,\,\,$$ (12 +22 + . . . . +242) $$-$$ (12 + 22 + . . . . .+ 72) = 140 m
$$ \Rightarrow {{24\left( {25} \right)\left( {49} \right)} \over 6} - {{7 \times 8 \times 15} \over 6} = 140\,m$$
$$ \Rightarrow \,\,\,\,\,$$ 490 $$-$$ 140 = 140 m
$$ \Rightarrow \,\,\,\,\,$$4760 = 140 m
$$ \Rightarrow \,\,\,\,\,$$ m = 34
Comments (0)
