JEE MAIN - Mathematics (2018 (Offline) - No. 4)
If the system of linear equations
x + ky + 3z = 0
3x + ky - 2z = 0
2x + 4y - 3z = 0
has a non-zero solution (x, y, z), then $${{xz} \over {{y^2}}}$$ is equal to
x + ky + 3z = 0
3x + ky - 2z = 0
2x + 4y - 3z = 0
has a non-zero solution (x, y, z), then $${{xz} \over {{y^2}}}$$ is equal to
30
-10
10
-30
Explanation
System of equations has non-zero solution when determinant of coefficient = 0.
So, in this questions,
$$\left| {\matrix{ 1 & K & 3 \cr 3 & K & { - 2} \cr 2 & 4 & { - 3} \cr } } \right| = 0$$
$$ \Rightarrow \,\,\,\,$$ ($$-$$ 3K + 8) $$-$$ K ($$-$$9 + 4) + 3(12 $$-$$ 2K) = 0
$$ \Rightarrow \,\,\,\,$$ $$-$$ 3K + 8 + 9K $$-$$ 4K + 36 $$-$$ 6K = 0
$$ \Rightarrow \,\,\,\,$$ $$-$$ 4K + 44 = 0
$$ \Rightarrow \,\,\,\,$$ K = 11
Now the equations become
x + 11y + 3z = 0 . . . (1)
3x + 11y $$-$$ 2z = 0 . . . (2)
2x + 4y $$-$$ 3z = 0 . . . (3)
By adding equation (1) and (3) we get,
3x + 15y = 0
$$ \Rightarrow \,\,\,\,$$ x = $$-$$ 5y
Putting x = $$-$$ 5y in equation (1) we get
$$-$$ 5y + 11y + 3z = 0
$$ \Rightarrow \,\,\,\,$$ 6y + 3z = 0
$$ \Rightarrow \,\,\,\,$$ z = $$-$$ 2y
$$\therefore\,\,\,\,$$ $${{xz} \over {{y^2}}}$$
$$ = {{\left( { - 5y} \right)\left( { - 2y} \right)} \over {{y^2}}}$$
$$ = {{10{y^2}} \over {{y^2}}}$$
$$ = 10$$
So, in this questions,
$$\left| {\matrix{ 1 & K & 3 \cr 3 & K & { - 2} \cr 2 & 4 & { - 3} \cr } } \right| = 0$$
$$ \Rightarrow \,\,\,\,$$ ($$-$$ 3K + 8) $$-$$ K ($$-$$9 + 4) + 3(12 $$-$$ 2K) = 0
$$ \Rightarrow \,\,\,\,$$ $$-$$ 3K + 8 + 9K $$-$$ 4K + 36 $$-$$ 6K = 0
$$ \Rightarrow \,\,\,\,$$ $$-$$ 4K + 44 = 0
$$ \Rightarrow \,\,\,\,$$ K = 11
Now the equations become
x + 11y + 3z = 0 . . . (1)
3x + 11y $$-$$ 2z = 0 . . . (2)
2x + 4y $$-$$ 3z = 0 . . . (3)
By adding equation (1) and (3) we get,
3x + 15y = 0
$$ \Rightarrow \,\,\,\,$$ x = $$-$$ 5y
Putting x = $$-$$ 5y in equation (1) we get
$$-$$ 5y + 11y + 3z = 0
$$ \Rightarrow \,\,\,\,$$ 6y + 3z = 0
$$ \Rightarrow \,\,\,\,$$ z = $$-$$ 2y
$$\therefore\,\,\,\,$$ $${{xz} \over {{y^2}}}$$
$$ = {{\left( { - 5y} \right)\left( { - 2y} \right)} \over {{y^2}}}$$
$$ = {{10{y^2}} \over {{y^2}}}$$
$$ = 10$$
Comments (0)
