JEE MAIN - Mathematics (2018 (Offline) - No. 2)
Let S = { $$x$$ $$ \in $$ R : $$x$$ $$ \ge $$ 0 and
$$2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$}. Then S
$$2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$}. Then S
contains exactly four elements
is an empty set
contains exactly one element
contains exactly two elements
Explanation
Given,
$$2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$
Case 1 :
When $$\sqrt x - 3 \ge 0,$$ then equation becomes
$$2\left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$
$$ \Rightarrow \,\,\,\,2\sqrt x - 6 + x - 6\sqrt x + 6 = 0$$
$$ \Rightarrow \,\,\,\,x\, - 4\sqrt x = 0$$
$$ \Rightarrow \,\,\,\,\sqrt x \left( {\sqrt x - 4} \right) = 0$$
$$\therefore\,\,\,$$ $$\sqrt x = 0,4$$
but as $$\sqrt x - 3 \ge 0$$ or $$\sqrt x \ge 3$$ then $$\sqrt x \ne 0$$
$$\therefore\,\,\,$$ $$\sqrt x = 4$$ value is possible.
Case 2 :
When $$\sqrt x - 3 < 0$$ or $$\sqrt x < 3.$$ There equation becomes
$$ - 2\left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$
$$ \Rightarrow \,\,\,\,\, - 2\sqrt x + 6 + x - 6\sqrt x + 6 = 0$$
$$ \Rightarrow \,\,\,\,x - 8\sqrt x + 12 = 0$$
$$ \Rightarrow \,\,\,\,x - 6\sqrt x - 2\sqrt x + 12 = 0$$
$$ \Rightarrow \,\,\,\,\sqrt x \left( {\sqrt x - 6} \right) - 2\left( {\sqrt x - 6} \right) = 0$$
$$ \Rightarrow \,\,\,\,\left( {\sqrt x - 2} \right)\left( {\sqrt x - 6} \right) = 0$$
$$\therefore\,\,\,$$ $$\sqrt x = 2,6$$
as $$\sqrt x < 3$$ so $$\sqrt x \ne 6$$
$$\therefore\,\,\,$$ $$\sqrt x = 2$$ is possible.
So, total possible value of $$\sqrt x = 2,4$$
or for x possible values are 4, 16.
$$\therefore\,\,\,$$ Set S contains exactly two elements 4 and 16.
$$2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$
Case 1 :
When $$\sqrt x - 3 \ge 0,$$ then equation becomes
$$2\left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$
$$ \Rightarrow \,\,\,\,2\sqrt x - 6 + x - 6\sqrt x + 6 = 0$$
$$ \Rightarrow \,\,\,\,x\, - 4\sqrt x = 0$$
$$ \Rightarrow \,\,\,\,\sqrt x \left( {\sqrt x - 4} \right) = 0$$
$$\therefore\,\,\,$$ $$\sqrt x = 0,4$$
but as $$\sqrt x - 3 \ge 0$$ or $$\sqrt x \ge 3$$ then $$\sqrt x \ne 0$$
$$\therefore\,\,\,$$ $$\sqrt x = 4$$ value is possible.
Case 2 :
When $$\sqrt x - 3 < 0$$ or $$\sqrt x < 3.$$ There equation becomes
$$ - 2\left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0$$
$$ \Rightarrow \,\,\,\,\, - 2\sqrt x + 6 + x - 6\sqrt x + 6 = 0$$
$$ \Rightarrow \,\,\,\,x - 8\sqrt x + 12 = 0$$
$$ \Rightarrow \,\,\,\,x - 6\sqrt x - 2\sqrt x + 12 = 0$$
$$ \Rightarrow \,\,\,\,\sqrt x \left( {\sqrt x - 6} \right) - 2\left( {\sqrt x - 6} \right) = 0$$
$$ \Rightarrow \,\,\,\,\left( {\sqrt x - 2} \right)\left( {\sqrt x - 6} \right) = 0$$
$$\therefore\,\,\,$$ $$\sqrt x = 2,6$$
as $$\sqrt x < 3$$ so $$\sqrt x \ne 6$$
$$\therefore\,\,\,$$ $$\sqrt x = 2$$ is possible.
So, total possible value of $$\sqrt x = 2,4$$
or for x possible values are 4, 16.
$$\therefore\,\,\,$$ Set S contains exactly two elements 4 and 16.
Comments (0)
