JEE MAIN - Mathematics (2018 (Offline) - No. 16)

Let S = { t $$ \in R:f(x) = \left| {x - \pi } \right|.\left( {{e^{\left| x \right|}} - 1} \right)$$$$\sin \left| x \right|$$ is not differentiable at t}, then the set S is equal to
{0, $$\pi $$}
$$\phi $$ (an empty set)
{0}
{$$\pi $$}

Explanation

Check differtiability at x = $$\pi $$ and x = 0

at x = 0 :

We have L. H. D = $$\mathop {\lim }\limits_{h \to 0} {{f\left( {0 - h} \right) - f\left( 0 \right)} \over { - h}}$$

= $$\mathop {\lim }\limits_{h \to 0} {{\left| { - h - \pi } \right|\left( {{e^{\left| { - h} \right|}} - 1} \right)\sin \left| h \right| - 0} \over { - h}} = 0$$

R. H. D = $$\mathop {\lim }\limits_{h \to 0} {{f\left( {0 + h} \right) - f\left( 0 \right)} \over h}$$

$$ = \mathop {\lim }\limits_{h \to 0} {{\left| {h - \pi } \right|\left( {{e^{\left| h \right|}} - 1} \right)\sin \left| h \right| - o} \over h}$$

= 0

$$\therefore,\,\,$$ LHD = RHD

Therefore, function is differentiable at x = $$\pi $$.

at x = $$\pi $$ :

L. H. D = $$\mathop {\lim }\limits_{h \to 0} {{f\left( {\pi - h} \right) - f\left( \pi \right)} \over { - h}}$$

= $$\mathop {\lim }\limits_{h \to 0} {{\left| {\pi - h - \pi } \right|\left( {{e^{\left| {\pi - h} \right|}} - 1} \right)\sin \left| {\pi - h} \right| - 0.} \over { - h}}$$

= 0

RH. D = $$\mathop {\lim }\limits_{h \to 0} {{f\left( {\pi + h} \right) - f\left( \pi \right)} \over h}$$

= $$\mathop {\lim }\limits_{h \to 0} {{\left| {\pi + h - \pi } \right|\left( {{e^{\left| {\pi + h} \right|}} - 1} \right)\sin \left| {\pi + h} \right| - 0} \over h}$$

= 0

$$\therefore\,\,\,$$ L. H. D = R H D

Therefore, function is differentiable at x = $$\pi $$,

Since, the function f(x) is differentiable at all the points including 0 and $$\pi $$.

So, f(x) is differentiable everywhere.

Therefore, set S is empty set.

S = $$\phi $$

Comments (0)

Advertisement