JEE MAIN - Mathematics (2018 (Offline) - No. 15)

Let g(x) = cosx2, f(x) = $$\sqrt x $$ and $$\alpha ,\beta \left( {\alpha < \beta } \right)$$ be the roots of the quadratic equation 18x2 - 9$$\pi $$x + $${\pi ^2}$$ = 0. Then the area (in sq. units) bounded by the curve
y = (gof)(x) and the lines $$x = \alpha $$, $$x = \beta $$ and y = 0 is :
$${1 \over 2}\left( {\sqrt 2 - 1} \right)$$
$${1 \over 2}\left( {\sqrt 3 - 1} \right)$$
$${1 \over 2}\left( {\sqrt 3 + 1} \right)$$
$${1 \over 2}\left( {\sqrt 3 - \sqrt 2 } \right)$$

Explanation

Given quadratic equation,

$$18{x^2} - 9\pi x + {\pi ^2} = 0$$

$$ \Rightarrow \,\,\,18{x^2} - 6\pi x - 3\pi x + {\pi ^2} = 0$$

$$ \Rightarrow \,\,\,\,6x\left( {3x - \pi } \right) - \pi \left( {3x - \pi } \right) = 0$$

$$ \Rightarrow \,\,\,\,\left( {3x - \pi } \right)\left( {6x - \pi } \right) = 0$$

$$\therefore$$ $$\,\,\,\,x = {\pi \over 3},{\pi \over 6}$$

as $$\,\,\,\, \propto < B$$

$$\therefore$$ $$\,\,\,\, \propto = {\pi \over 6}$$ $$\,\,\,\,$$ and $$\,\,\,\,$$ $$\beta = {\pi \over 3}$$

Given, $$g\left( x \right) = \cos {x^2}$$ and $$ + \left( x \right) = \sqrt x $$

$$y = \left( {gof} \right)x$$

$$ = \,\,\,\,\,g\left( {f\left( x \right)} \right)$$

$$ = \,\,\,\,\cos \left( {f{{\left( x \right)}^2}} \right)$$

$$ = \,\,\,\,\cos {\left( {\sqrt x} \right)^2}$$

$$ = \,\,\,\,\cos x$$

So, the required area in the curve is

JEE Main 2018 (Offline) Mathematics - Area Under The Curves Question 127 English Explanation

Area $$ = \int\limits_{{\pi \over 6}}^{{\pi \over 3}} {\cos \,\,dx} $$

$$ = \left[ {\sin x} \right]_{{\pi \over 6}}^{{\pi \over 3}}$$

$$ = \sin {\pi \over 3} - \sin {\pi \over 6}$$

$$ = {{\sqrt 3} \over 2} - {1 \over 2}$$

$$ = {{\sqrt 3 - 1} \over 2}$$

Comments (0)

Advertisement