JEE MAIN - Mathematics (2018 (Offline) - No. 12)
Let y = y(x) be the solution of the differential equation
$$\sin x{{dy} \over {dx}} + y\cos x = 4x$$, $$x \in \left( {0,\pi } \right)$$.
If $$y\left( {{\pi \over 2}} \right) = 0$$, then $$y\left( {{\pi \over 6}} \right)$$ is equal to :
$$\sin x{{dy} \over {dx}} + y\cos x = 4x$$, $$x \in \left( {0,\pi } \right)$$.
If $$y\left( {{\pi \over 2}} \right) = 0$$, then $$y\left( {{\pi \over 6}} \right)$$ is equal to :
$$ - {4 \over 9}{\pi ^2}$$
$${4 \over {9\sqrt 3 }}{\pi ^2}$$
$$ - {8 \over {9\sqrt 3 }}{\pi ^2}$$
$$ - {8 \over 9}{\pi ^2}$$
Explanation
Given,
sin x $${{dy} \over {dx}} + y\cos y = 4x$$
$$ \Rightarrow \,\,\,\,{{dy} \over {dx}}\,$$ + y cot x = 4x cosec x
This is a linear differential equation of form,
$${{dy} \over {dx}}\,$$ + py = Q
Where p = cot x and Q = 4x cosec x
So, Integrating factor (I. F)
= $${e^{\int {pdx} }}$$
= $${e^{\int {\cot dx} }}$$
= $${e^{\ln \left| {\sin \,x} \right|}}$$
= sin x as $$x \in \left( {0,\pi } \right)$$
Solution of the differential equation is
y sin x = $$\int {} $$ 4x cosecx sinx dx + c
$$ \Rightarrow \,\,\,\,$$ y sinx = $$\int {4x\,dx\, + c} $$
$$ \Rightarrow \,\,\,\,$$ y sinx = 4.$${{{x^2}} \over 2} + c$$
$$ \Rightarrow \,\,\,\,$$ y sinx = 2x2 + c . . . . . (1)
Given that, $$y\left( {{\pi \over 2}} \right) = 0$$
$$\therefore\,\,\,$$ x = $$y\left( {{\pi \over 2}} \right) = 0$$ and y = 0
Put this x = $${\pi \over 2}$$ and y = 0 at equation (1)
0.1 = 2. $$\left( {{\pi \over 2}} \right)$$2 + c
$$ \Rightarrow \,\,\,$$ c =$$ - {{{\pi ^2}} \over 2}$$
So, differential equation is
y sin x = 2x2 $$-$$ $${{{\pi ^2}} \over 2}\,\,.....(2)$$
Now we have to find y $$\left( {{\pi \over 6}} \right).$$
So, put x = $${{\pi \over 6}}$$ at equation (2)
y . sin $${{\pi \over 6}}$$ = 2 $${\left( {{\pi \over 6}} \right)^2} - {{{\pi ^2}} \over 2}$$
$$ \Rightarrow \,\,\,\,\,\,\,y.{1 \over 2}$$ = 2. $${{{\pi ^2}} \over {36}} - {{{\pi ^2}} \over 2}$$
$$ \Rightarrow \,\,\,\,\,{y \over 2} = {{{\pi ^2}} \over {18}} - {{{\pi ^2}} \over 2}$$
$$ \Rightarrow \,\,\,\,{y \over 2} = {{{\pi ^2} - 9{\pi ^2}} \over {18}}$$
$$ \Rightarrow \,\,\,\,\,y = - {{8{\pi ^2}} \over 9}$$
sin x $${{dy} \over {dx}} + y\cos y = 4x$$
$$ \Rightarrow \,\,\,\,{{dy} \over {dx}}\,$$ + y cot x = 4x cosec x
This is a linear differential equation of form,
$${{dy} \over {dx}}\,$$ + py = Q
Where p = cot x and Q = 4x cosec x
So, Integrating factor (I. F)
= $${e^{\int {pdx} }}$$
= $${e^{\int {\cot dx} }}$$
= $${e^{\ln \left| {\sin \,x} \right|}}$$
= sin x as $$x \in \left( {0,\pi } \right)$$
Solution of the differential equation is
y sin x = $$\int {} $$ 4x cosecx sinx dx + c
$$ \Rightarrow \,\,\,\,$$ y sinx = $$\int {4x\,dx\, + c} $$
$$ \Rightarrow \,\,\,\,$$ y sinx = 4.$${{{x^2}} \over 2} + c$$
$$ \Rightarrow \,\,\,\,$$ y sinx = 2x2 + c . . . . . (1)
Given that, $$y\left( {{\pi \over 2}} \right) = 0$$
$$\therefore\,\,\,$$ x = $$y\left( {{\pi \over 2}} \right) = 0$$ and y = 0
Put this x = $${\pi \over 2}$$ and y = 0 at equation (1)
0.1 = 2. $$\left( {{\pi \over 2}} \right)$$2 + c
$$ \Rightarrow \,\,\,$$ c =$$ - {{{\pi ^2}} \over 2}$$
So, differential equation is
y sin x = 2x2 $$-$$ $${{{\pi ^2}} \over 2}\,\,.....(2)$$
Now we have to find y $$\left( {{\pi \over 6}} \right).$$
So, put x = $${{\pi \over 6}}$$ at equation (2)
y . sin $${{\pi \over 6}}$$ = 2 $${\left( {{\pi \over 6}} \right)^2} - {{{\pi ^2}} \over 2}$$
$$ \Rightarrow \,\,\,\,\,\,\,y.{1 \over 2}$$ = 2. $${{{\pi ^2}} \over {36}} - {{{\pi ^2}} \over 2}$$
$$ \Rightarrow \,\,\,\,\,{y \over 2} = {{{\pi ^2}} \over {18}} - {{{\pi ^2}} \over 2}$$
$$ \Rightarrow \,\,\,\,{y \over 2} = {{{\pi ^2} - 9{\pi ^2}} \over {18}}$$
$$ \Rightarrow \,\,\,\,\,y = - {{8{\pi ^2}} \over 9}$$
Comments (0)
