JEE MAIN - Mathematics (2017 - 9th April Morning Slot - No. 8)
The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60o. If the area of the quadrilateral is $$4\sqrt 3 $$, then the perimeter
of the quadrilateral is :
12.5
13.2
12
13
Explanation
_9th_April_Morning_Slot_en_8_1.png)
Here; cos$$\theta $$ = $${{{a^2} + {b^2} - {c^2}} \over {2ab}}$$
and $$\theta $$ = 60o
$$ \Rightarrow $$ cos 60o = $${{4 + 25 - {c^2}} \over {2.2.5}}$$
$$ \Rightarrow $$ 10 = 29 $$-$$ c2
$$ \Rightarrow $$ c2 = 19
$$ \Rightarrow $$ c = $$\sqrt {19} $$
also; cos$$\theta $$ = $${{{a^2} + {b^2} - {c^2}} \over {2ab}}$$
and $$\theta $$ = 120o
$$ \Rightarrow $$ $$-$$ $${1 \over 2}$$ = $${{{a^2} + {b^2} - 19} \over {2ab}}$$
$$ \Rightarrow $$ a2 + b2 $$-$$ 19 = $$-$$ ab
$$ \Rightarrow $$ a2 + b2 + ab = 19
$$ \therefore $$ Area = $${1 \over 2} \times 2 \times 5$$ sin 60 + $${1 \over 2}$$ ab sin 120o = 4$$\sqrt 3 $$
$$ \Rightarrow $$ $${{5\sqrt 3 } \over 2} + {{ab\sqrt 3 } \over 4}$$ = $$4\sqrt 3 $$
$$ \Rightarrow $$ $${{ab} \over 4}$$ = 4 $$-$$ $${5 \over 2}$$ = $${3 \over 2}$$
$$ \Rightarrow $$ ab = 6
$$ \therefore $$ a2 + b2 = 13
$$ \Rightarrow $$ a = 2, b = 3
Perimeter = Sum of all sides
= 2 + 5 + 2 + 3 = 12
Comments (0)
