JEE MAIN - Mathematics (2017 - 9th April Morning Slot - No. 4)
For two 3 × 3 matrices A and B, let A + B = 2BT and 3A + 2B = I3, where BT is
the transpose of B and I3 is 3 × 3 identity matrix. Then :
5A + 10B = 2I3
10A + 5B = 3I3
B + 2A = I3
3A + 6B = 2I3
Explanation
Given, A + B = 2BT .......(1)
$$ \Rightarrow $$ (A + B)T = (2BT)T
$$ \Rightarrow $$ AT + BT = 2B
$$ \Rightarrow $$ B = $${{{A^T} + {B^T}} \over 2}$$
Now put this in equation (1)
So, A + $${{{A^T} + {B^T}} \over 2}$$ = 2BT
$$ \Rightarrow $$2A + AT = 3BT
$$ \Rightarrow $$ A = $${{3{B^T} - {A^T}} \over 2}$$
Also, 3A + 2B = I3 .......(2)
$$ \Rightarrow $$ $$3\left( {{{3{B^T} - {A^T}} \over 2}} \right) + 2\left( {{{{A^T} + {B^T}} \over 2}} \right)$$ = I3
$$ \Rightarrow $$ 11BT - AT = 2I3
$$ \Rightarrow $$ (11BT - AT)T = (2I3)T
$$ \Rightarrow $$ 11B - A = 2I3 ........(3)
Multiply (3) by 3 and then adding (2) and (3) we get,
35B = 7I3
$$ \Rightarrow $$ B = $${{{I_3}} \over 5}$$
From (3), 11$${{{I_3}} \over 5}$$ - A = 2I3
$$ \Rightarrow $$ A = $${{{I_3}} \over 5}$$
$$ \therefore $$ 5A = 5B = I3
$$ \Rightarrow $$ 10A + 5B = 3I3
$$ \Rightarrow $$ (A + B)T = (2BT)T
$$ \Rightarrow $$ AT + BT = 2B
$$ \Rightarrow $$ B = $${{{A^T} + {B^T}} \over 2}$$
Now put this in equation (1)
So, A + $${{{A^T} + {B^T}} \over 2}$$ = 2BT
$$ \Rightarrow $$2A + AT = 3BT
$$ \Rightarrow $$ A = $${{3{B^T} - {A^T}} \over 2}$$
Also, 3A + 2B = I3 .......(2)
$$ \Rightarrow $$ $$3\left( {{{3{B^T} - {A^T}} \over 2}} \right) + 2\left( {{{{A^T} + {B^T}} \over 2}} \right)$$ = I3
$$ \Rightarrow $$ 11BT - AT = 2I3
$$ \Rightarrow $$ (11BT - AT)T = (2I3)T
$$ \Rightarrow $$ 11B - A = 2I3 ........(3)
Multiply (3) by 3 and then adding (2) and (3) we get,
35B = 7I3
$$ \Rightarrow $$ B = $${{{I_3}} \over 5}$$
From (3), 11$${{{I_3}} \over 5}$$ - A = 2I3
$$ \Rightarrow $$ A = $${{{I_3}} \over 5}$$
$$ \therefore $$ 5A = 5B = I3
$$ \Rightarrow $$ 10A + 5B = 3I3
Comments (0)
