JEE MAIN - Mathematics (2017 - 9th April Morning Slot - No. 22)
If $$\int\limits_1^2 {{{dx} \over {{{\left( {{x^2} - 2x + 4} \right)}^{{3 \over 2}}}}}} = {k \over {k + 5}},$$ then k is equal to :
1
2
3
4
Explanation
Given, I = $$\int\limits_1^2 {{{dx} \over {{{\left( {{x^2} - 2x + 4} \right)}^{{3 \over 2}}}}}} $$
= $$\int\limits_1^2 {{{dx} \over {{{\left[ {{{\left( {x - 1} \right)}^2} + 3} \right]}^{{3 \over 2}}}}}} $$
Let x $$-$$ 1 = $$\sqrt 3 $$ tan$$\theta $$
$$ \Rightarrow $$$$\,\,\,$$ dx = $$\sqrt 3 $$ sec2$$\theta $$ d$$\theta $$
When x = 1, then $$\theta $$ = 0
and when x = 2, $$\theta $$ = $${\pi \over 6}$$
I = $$\int\limits_0^{{\pi \over 6}} {{{\sqrt 3 {{\sec }^2}\theta \,d\theta } \over {{{\left( {3{{\tan }^2}\theta + 3} \right)}^{{3 \over 2}}}}}} $$
= $$\int\limits_0^{{\pi \over 6}} {{{\sqrt 3 {{\sec }^2}\theta \,d\theta } \over {{{\left( {3{{\sec }^2}\theta } \right)}^{{3 \over 2}}}}}} $$
= $$\int\limits_0^{{\pi \over 6}} {{{\sqrt 3 {{\sec }^2}\theta \,d\theta } \over {3\sqrt 3 {{\sec }^3}\theta }}} $$
= $${1 \over 3}$$ $$\int\limits_0^{{\pi \over 6}} {{{d\theta } \over {\sec \theta }}} $$
= $${1 \over 3}\int\limits_0^{{\pi \over 6}} {\cos \theta \,d\theta } $$
= $${1 \over 3}{\left[ {\sin \theta } \right]_\theta }^{{\pi \over 6}}$$
= $${1 \over 3} \times {1 \over 2}$$
= $${1 \over 6}$$
$$\therefore\,\,\,$$ According to the question,
$${k \over {k + 5}}$$ = $${1 \over 6}$$
$$ \Rightarrow $$$$\,\,\,$$ 6k = k + 5
$$ \Rightarrow $$$$\,\,\,$$ k = 1
= $$\int\limits_1^2 {{{dx} \over {{{\left[ {{{\left( {x - 1} \right)}^2} + 3} \right]}^{{3 \over 2}}}}}} $$
Let x $$-$$ 1 = $$\sqrt 3 $$ tan$$\theta $$
$$ \Rightarrow $$$$\,\,\,$$ dx = $$\sqrt 3 $$ sec2$$\theta $$ d$$\theta $$
When x = 1, then $$\theta $$ = 0
and when x = 2, $$\theta $$ = $${\pi \over 6}$$
I = $$\int\limits_0^{{\pi \over 6}} {{{\sqrt 3 {{\sec }^2}\theta \,d\theta } \over {{{\left( {3{{\tan }^2}\theta + 3} \right)}^{{3 \over 2}}}}}} $$
= $$\int\limits_0^{{\pi \over 6}} {{{\sqrt 3 {{\sec }^2}\theta \,d\theta } \over {{{\left( {3{{\sec }^2}\theta } \right)}^{{3 \over 2}}}}}} $$
= $$\int\limits_0^{{\pi \over 6}} {{{\sqrt 3 {{\sec }^2}\theta \,d\theta } \over {3\sqrt 3 {{\sec }^3}\theta }}} $$
= $${1 \over 3}$$ $$\int\limits_0^{{\pi \over 6}} {{{d\theta } \over {\sec \theta }}} $$
= $${1 \over 3}\int\limits_0^{{\pi \over 6}} {\cos \theta \,d\theta } $$
= $${1 \over 3}{\left[ {\sin \theta } \right]_\theta }^{{\pi \over 6}}$$
= $${1 \over 3} \times {1 \over 2}$$
= $${1 \over 6}$$
$$\therefore\,\,\,$$ According to the question,
$${k \over {k + 5}}$$ = $${1 \over 6}$$
$$ \Rightarrow $$$$\,\,\,$$ 6k = k + 5
$$ \Rightarrow $$$$\,\,\,$$ k = 1
Comments (0)
