JEE MAIN - Mathematics (2017 - 9th April Morning Slot - No. 19)
f (3x) = f ' (x) . f '' (x), for all x $$ \in $$ R. Then :
Explanation
Let $$f(x) = {a_0}{x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 1}} + \,\,....\,\, + {a_{n - 1}}x + {a_n}$$
$$f'(x) = {a_0}n{x^{n - 1}} + {a_1}(n - 1){x^{n - 2}} + \,\,.....\,\, + {a_{n - 1}}$$
$$f''(x) = {a_0}n(n - 1){x^{n - 2}} + {a_1}(n - 1)(n - 2){x^{n - 3}} + \,\,....\,\, + {a_{n - 2}}$$
Now,
$$f(3x) = {3^n}{a_0}{x^n} + {3^{n - 1}}{a_1}{x^{n - 1}} + {3^{n - 2}}{a_2}{x^{n - 2}} + \,\,....\,\, + 3{a_{n - 1}} + {a_n}$$
$$f'(x)\,.\,f''(x) = [{a_0}n{x^{n - 1}} + {a_1}(n - 1){x^{n - 2}} + \,\,....\,\, + {a_{n - 1}}]$$
$$[{a_0}n(n - 1){x^{n - 2}} + {a_1}(n - 1)(n - 2){x^{n - 3}} + \,\,....\,\, + {a_{n - 2}}]$$
Comparing highest powers of x, we get
$${3^n}{a_0}{x_n} = a_0^2(n - 1){x^{n - 1 + n - 2}} = a_0^2{n^2}(n - 1){x^{2n - 3}}$$
Therefore, $$2n - 3 = n$$
$$\Rightarrow$$ n = 3 and $${3^n}{a_0} = a_0^2{n^2}(n - 1)$$
$$ \Rightarrow {a_0} = 27 = {3 \over 2}$$
Therefore, $$f(x) = {3 \over 2}{x^3} + {a_1}{x^2} + {a_2}x + {a_3}$$
$$f'(x) = {9 \over 2}{x^2} + 2{a_1}x + {a_2}$$
$$f''(x) = 9x + 2{a_1}$$
$$f(3x) = {{81} \over 2}{x^3} + 9{a_1}{x^2} + 3{a_2}x + {a_3}$$
Now, $$f(3x) = f'(x)\,.\,f''(x)$$
$$ \Rightarrow {{81} \over 2}{x^3} + 9{a_1}{x^2} + 3{a_2}x + {a_3}$$
$$ \Rightarrow \left( {{9 \over 2}{x^2} + 2{a_1}x + {a_2}} \right)(9x + 2{a_1})$$
$$ \Rightarrow {{81} \over 2}{x^3} + 9{a_1}{x^2} + 3{a_2}x + {a_3} = {{81} \over 2}{x^3} + [9{a_1} + 18{a_1}]{x^2} + [4a_1^2 + 9{a_2}]x + 2{a_1}{a_2}$$
Comparing the coefficients, we get
$$9{a_1} = 27{a_1}$$
$$ \Rightarrow {a_1} = 0,\,3{a_2} = 4a_1^2 + 9{a_2} = 9{a_2}$$
$$ \Rightarrow {a_2} = 0$$
Therefore, $$f(x) = {3 \over 2}{x^3}$$
$$f'(x) = {9 \over 2}{x^2}$$
$$f''(x) = 9x$$
Hence, $$f''(2) - f'(x) = 18 - 18 = 0$$
Comments (0)
