JEE MAIN - Mathematics (2017 - 9th April Morning Slot - No. 18)
If $$\,\,\,$$ f$$\left( {{{3x - 4} \over {3x + 4}}} \right)$$ = x + 2, x $$ \ne $$ $$-$$ $${4 \over 3}$$, and
$$\int {} $$f(x) dx = A log$$\left| {} \right.$$1 $$-$$ x $$\left| {} \right.$$ + Bx + C,
then the ordered pair (A, B) is equal to :
(where C is a constant of integration)
$$\int {} $$f(x) dx = A log$$\left| {} \right.$$1 $$-$$ x $$\left| {} \right.$$ + Bx + C,
then the ordered pair (A, B) is equal to :
(where C is a constant of integration)
$$\left( {{8 \over 3},{2 \over 3}} \right)$$
$$\left( { - {8 \over 3},{2 \over 3}} \right)$$
$$\left( { - {8 \over 3}, - {2 \over 3}} \right)$$
$$\left( { {8 \over 3}, - {2 \over 3}} \right)$$
Explanation
Given,
f$$\left( {{{3x - 4} \over {3x + 4}}} \right)$$ = x + 2, x $$ \ne $$ $$-$$ $${4 \over 3}$$
Let, $${{3x - 4} \over {3x + 4}}$$ = t
$$ \Rightarrow $$$$\,\,\,$$ 3x $$-$$ 4 = 3tx + 4t
$$ \Rightarrow $$$$\,\,\,$$ 3x $$-$$ 3tx = 4t + 4
$$ \Rightarrow $$$$\,\,\,$$ x = $${{4t + 4} \over {3 - 3t}}$$
So, f(t) = $${{4t + 4} \over {3 - 3t}}$$ + 2 = $${{10 - 2t} \over {3 - 3t}}$$
$$\therefore\,\,\,$$ f (x) = $${{10 - 2x} \over {3 - 3x}}$$
$$\therefore\,\,\,$$ $$\int {f(x)\,dx} $$
= $$\int {{{2x - 10} \over {3x - 3}}} \,dx$$
= $$\int {{{2x} \over {3x - 3}} - 10\int {{{dx} \over {3x - 3}}} } $$
= $${2 \over 3}\int {{{x - 1} \over {x + 1}}} dx + {2 \over 3}\int {{{dx} \over {x - 1}} - {{10} \over 3}} \int {{{dx} \over {x - 1}}} $$
= $${2 \over 3}$$ x + $${2 \over 3}$$ log $$\left| {x - 1} \right|$$ $$-$$ $${{10} \over 3}$$ log $$\left| {x - 1} \right|$$ + C
= $${2 \over 3}$$ x $$-$$ $${8 \over 3}$$ log $$\left| {x - 1} \right|$$ + C
$$\therefore\,\,\,$$ A = $$-$$ $${8 \over 3}$$ and B = $${2 \over 3}$$
f$$\left( {{{3x - 4} \over {3x + 4}}} \right)$$ = x + 2, x $$ \ne $$ $$-$$ $${4 \over 3}$$
Let, $${{3x - 4} \over {3x + 4}}$$ = t
$$ \Rightarrow $$$$\,\,\,$$ 3x $$-$$ 4 = 3tx + 4t
$$ \Rightarrow $$$$\,\,\,$$ 3x $$-$$ 3tx = 4t + 4
$$ \Rightarrow $$$$\,\,\,$$ x = $${{4t + 4} \over {3 - 3t}}$$
So, f(t) = $${{4t + 4} \over {3 - 3t}}$$ + 2 = $${{10 - 2t} \over {3 - 3t}}$$
$$\therefore\,\,\,$$ f (x) = $${{10 - 2x} \over {3 - 3x}}$$
$$\therefore\,\,\,$$ $$\int {f(x)\,dx} $$
= $$\int {{{2x - 10} \over {3x - 3}}} \,dx$$
= $$\int {{{2x} \over {3x - 3}} - 10\int {{{dx} \over {3x - 3}}} } $$
= $${2 \over 3}\int {{{x - 1} \over {x + 1}}} dx + {2 \over 3}\int {{{dx} \over {x - 1}} - {{10} \over 3}} \int {{{dx} \over {x - 1}}} $$
= $${2 \over 3}$$ x + $${2 \over 3}$$ log $$\left| {x - 1} \right|$$ $$-$$ $${{10} \over 3}$$ log $$\left| {x - 1} \right|$$ + C
= $${2 \over 3}$$ x $$-$$ $${8 \over 3}$$ log $$\left| {x - 1} \right|$$ + C
$$\therefore\,\,\,$$ A = $$-$$ $${8 \over 3}$$ and B = $${2 \over 3}$$
Comments (0)
