JEE MAIN - Mathematics (2017 - 9th April Morning Slot - No. 15)
(x2 $$-$$ 1) $${{{d^2}y} \over {d{x^2}}}$$ + $$\lambda $$x $${{dy} \over {dx}}$$ + ky = 0,
then $$\lambda $$ + k is equal to :
Explanation
It is given that
$$2x = {y^{1/5}} + {y^{ - 1/5}}$$
$$ \Rightarrow 2x = {y^{1/5}} + 1/{y^{1/5}}$$
Therefore, $$2x = a + {1 \over a} \Rightarrow {a^2} - 2ax + 1 = 0$$
$$a = {{2x \pm \sqrt {4{x^2} - 4} } \over 2}$$
$$ \Rightarrow a = {{2x \pm 2\sqrt {{x^2} - 1} } \over 2}$$
$$ \Rightarrow a = x \pm \sqrt {{x^2} - 1} $$
$$ \Rightarrow {y^{1/5}} = x \pm \sqrt {{x^2} - 1} $$
$$ \Rightarrow y = {(x \pm \sqrt {{x^2} - 1} )^5}$$
Therefore,
$${{dy} \over {dx}} = 5{(x \pm \sqrt {{x^2} - 1} )^4}\left( {1 \pm {{2x} \over {2\sqrt {{x^2} - 1} }}} \right)$$
$$ = 5{(x + \sqrt {{x^2} - 1} )^4}\left( {{{\sqrt {{x^2} - 1} \pm x} \over {\sqrt {{x^2} - 1} }}} \right)$$
$$ \Rightarrow {{dy} \over {dx}} = {{ - 5y} \over {\sqrt {{x^2} - 1} }}$$ ...... (1)
$$ \Rightarrow {{{d^2}y} \over {d{x^2}}} = {{\left[ {\sqrt {{x^2} - 1} \left( { - 5{{dy} \over {dx}}} \right) - 5( - 5y){1 \over 2}{{2x} \over {\sqrt {{x^2} - 1} }}} \right]} \over {({x^2} - 1)}}$$
Therefore, $$({x^2} - 1){{{d^2}y} \over {d{x^2}}} = - 5\sqrt {{x^2} - 1} {{dy} \over {dx}} + 5y{x \over {\sqrt {{x^2} - 1} }}$$
$$ \Rightarrow ({x^2} - 1){{{d^2}y} \over {d{x^2}}} = 25y - x{{dy} \over {dx}}$$
$$ \Rightarrow ({x^2} - 1){{{d^2}y} \over {d{x^2}}} + 1x{{dy} \over {dx}} - 25y = 0$$
Therefore, $$\lambda$$ = 1, k = $$-$$25; hence,
$$\lambda + k = - 24$$
Comments (0)
