JEE MAIN - Mathematics (2017 - 9th April Morning Slot - No. 14)

The eccentricity of an ellipse having centre at the origin, axes along the co-ordinate axes and passing through the points (4, −1) and (−2, 2) is :
$${1 \over 2}$$
$${2 \over {\sqrt 5 }}$$
$${{\sqrt 3 } \over 2}$$
$${{\sqrt 3 } \over 4}$$

Explanation

Centre at (0, 0)

$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}}$$ = 1

at point (4, $$-$$ 1)

$${{16} \over {{a^2}}} + {1 \over {{b^2}}}$$ = 1

$$ \Rightarrow $$   16b2 + a2 = a2b2         . . . .(i)

at point ($$-$$ 2, 2)

$${4 \over {{a^2}}} + {4 \over {{b^2}}} = 1$$

$$ \Rightarrow $$   4b2 + 4a2 = a2b2          . . . .(ii)

$$ \Rightarrow $$   16b2 + a2 = 4a2 + 4b2

From equations (i) and (ii)

$$ \Rightarrow $$   3a2 = 12b2

$$ \Rightarrow $$   a2 = 4b2

b2 = a2(1 $$-$$ e2)

$$ \Rightarrow $$   e2 = $${3 \over 4}$$

$$ \Rightarrow $$   e = $${{\sqrt 3 } \over 2}$$

Comments (0)

Advertisement