JEE MAIN - Mathematics (2017 - 9th April Morning Slot - No. 11)
A value of x satisfying the equation sin[cot−1 (1+ x)] = cos [tan−1 x], is :
$$ - {1 \over 2}$$
$$-$$ 1
0
$$ {1 \over 2}$$
Explanation
Let, $${\cot ^{ - 1}}(1 + x) = \alpha $$
$$ \Rightarrow 1 + x = \cot \alpha $$
Now, let $${\tan ^{ - 1}}(x) = \beta $$
$$ \Rightarrow x = \tan \beta $$
Given, $$\sin ({\cot ^{ - 1}}(x)) = \cos ({\tan ^{ - 1}}(x))$$
$$ \Rightarrow \sin \alpha = \cos \beta $$
From $$\Delta$$ABC, $$\sin \alpha = {1 \over {\sqrt {1 + {x^2} + 2x + 1} }}$$
$$ = {1 \over {\sqrt {{x^2} + 2x + 2} }}$$
From $$\Delta$$MNO, $$\cos \beta = {1 \over {\sqrt {{x^2} + 1} }}$$
$$\therefore$$ $${1 \over {\sqrt {{x^2} + 2x + 2} }} = {1 \over {\sqrt {{x^2} + 1} }}$$
$$ \Rightarrow {x^2} + 2x + 2 = {x^2} + 1$$
$$ \Rightarrow 2x + 2 = 1$$
$$ \Rightarrow 2x = - 1$$
$$ \Rightarrow x = -{1 \over 2}$$
Comments (0)
