JEE MAIN - Mathematics (2017 - 8th April Morning Slot - No. 8)
Let z$$ \in $$C, the set of complex numbers. Then the equation, 2|z + 3i| $$-$$ |z $$-$$ i| = 0 represents :
a circle with radius $${8 \over 3}.$$
a circle with diameter $${{10} \over 3}.$$
an ellipse with length of major axis $${{16} \over 3}.$$
an ellipse with length of minor axis $${{16} \over 9}.$$
Explanation
Given,
2 $$\,\left| \, \right.$$z + 3i$$\,\left| \, \right.$$ = $$\,\left| \, \right.$$z $$-$$i$$\,\left| \, \right.$$
Let z = x + iy
$$ \Rightarrow $$$$\,\,\,$$ 2 $$\,\left| \, \right.$$ x + iy + 3i $$\,\left| \, \right.$$ = $$\,\left| \, \right.$$ x + iy $$-$$ i $$\,\left| \, \right.$$
$$ \Rightarrow $$$$\,\,\,$$ 2 $$\,\left| \, \right.$$ x + i (y + 3)$$\,\left| \, \right.$$ = $$\,\left| \, \right.$$ x + i (y $$-$$ 1)$$\,\left| \, \right.$$
$$ \Rightarrow $$$$\,\,\,$$ 2 $$\sqrt {{x^2} + {{\left( {y + 3} \right)}^2}} $$ = $$\sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} $$
$$ \Rightarrow $$$$\,\,\,$$ 4 (x2 + y2 + 6y + 9) = x2 + y2 $$-$$ 2y + 1
$$ \Rightarrow $$$$\,\,\,$$ 3x2 + 3y2 + 26y + 35 = 0
$$ \Rightarrow $$$$\,\,\,$$ x2 + y2 + $${{26} \over 3}$$ y + $${{35} \over 3}$$ = 0
This is a equation of circle with center ($$-$$ $${{13} \over 3}$$, 0)
$$\therefore\,\,\,$$ Radius = $$\sqrt {0 + {{169} \over 9} - {{35} \over 3}} $$
= $$\sqrt {{{64} \over 9}} $$
= $${8 \over 3}$$
2 $$\,\left| \, \right.$$z + 3i$$\,\left| \, \right.$$ = $$\,\left| \, \right.$$z $$-$$i$$\,\left| \, \right.$$
Let z = x + iy
$$ \Rightarrow $$$$\,\,\,$$ 2 $$\,\left| \, \right.$$ x + iy + 3i $$\,\left| \, \right.$$ = $$\,\left| \, \right.$$ x + iy $$-$$ i $$\,\left| \, \right.$$
$$ \Rightarrow $$$$\,\,\,$$ 2 $$\,\left| \, \right.$$ x + i (y + 3)$$\,\left| \, \right.$$ = $$\,\left| \, \right.$$ x + i (y $$-$$ 1)$$\,\left| \, \right.$$
$$ \Rightarrow $$$$\,\,\,$$ 2 $$\sqrt {{x^2} + {{\left( {y + 3} \right)}^2}} $$ = $$\sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} $$
$$ \Rightarrow $$$$\,\,\,$$ 4 (x2 + y2 + 6y + 9) = x2 + y2 $$-$$ 2y + 1
$$ \Rightarrow $$$$\,\,\,$$ 3x2 + 3y2 + 26y + 35 = 0
$$ \Rightarrow $$$$\,\,\,$$ x2 + y2 + $${{26} \over 3}$$ y + $${{35} \over 3}$$ = 0
This is a equation of circle with center ($$-$$ $${{13} \over 3}$$, 0)
$$\therefore\,\,\,$$ Radius = $$\sqrt {0 + {{169} \over 9} - {{35} \over 3}} $$
= $$\sqrt {{{64} \over 9}} $$
= $${8 \over 3}$$
Comments (0)
